
AD-A08 528 SOFTECH INC WALTHAM MA F/6 5/9

THE JO VIAL (J73) WORKBOOK. VOLUME 10. DIRECTIVESO R 300 7 04

UNCLASSIFIED RADC-TR-81-333 00 -10 NL

I'

11111 O ~ 128
d2~IIIlI I11111 L. 132 122

- a-
E36

p~o

III~

* MICROCOPY RESOLUTION TEST CHART
NATIONAL ALLAL ALL Of STANONROS * AS

PHOTOGRAPH THIS SHEET

mq LEVEL V,.WORY

The JOVIAL (J?3-3) oklook
DOCUMENT IDENTIFICATION AloV. S

Appeovd for publc .eluaq
Disatution Unlinited

DISTRIBUTION STATEMENT

AOCEUIN FORN7IS GRAWi

Um TAB ' DTICUNANNOlcUNCED 0' sr- LECTE 1

JU~flICATON S EC 14 1981

BY D
DITRIBUTION /
AVAiBILrTY CODES
DLT AVAIL AND/OR SPECIAL DATE ACCESSIONED

Ln I__
DISTRIBUTION STAMP

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM 7DOCUMENT PROCESSING SHEET
DTIC or O 70A

------ - - -. -"-

IRADC-TR41 433, Vos. %.XII (of 15)
Interim Rope
November 1"I1

STHE JOVIAL (J73) WORKBOOK

Soffech, Inc.

* I,.I

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This material may be reproduced by and
for the U.S. Government pursuant to the
copyright license under DAR Clause
7-104.9(a) (1977 APR).

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

@1 12 08 121

This report has been reviewed by ihe RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-333, Vols %-XII (of 15) have been reviewed and are approved
for publication.

APPROVED:

DOUGLAS A. WHITE
Project Engineer

APPROVED:

JOHN J. MARCTNIAK, olonl, USAF
Chief, Command and Control Division

FOR THE COMHANDER:a.g, ? 2 .g

JOHN
P. HUSS_

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the Ru.
mailing list, or if the addressee is so longer employed by your organization,
please notify RADC. (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report uiless contractual obligations or notices
on a specific document requires that it be returned.

_______ ___1_4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Ir.U Dagenieft0.,

REPORT DOCI'ENTA.TION PAGE StFO.R COWMLrTMUG FORM
1. RIEPOT NUMNFER (of 15) 2. GOVT ACCESSION NO. S. RECiPIE[NTS CATALOG NUMBER

RADC-TR-81-333, Vols 3 - XII
4. TITLE (sad a leg ' " S. TYPE OF REPORT & PEIMOO COVERED

Interim Report
THE JOVIAL (J73) WORKBOOK Dec 79 - Oct 81

6. PERORNMING O'G. REPORT NUMBER
N/A

7. AUTIqOM(i) s. CONTRACT OR GRANT NUMUER(s)

N/A

F30602-79-C-0040

S. 09POF5MING ORGANIZATION NAME AND ADDRESS '-T. 7PROGRAM CLEMENT. PROJECT. TASK
SofTech, Inc. AREA S WORK UNIT MOSRS

460 Totten Pond Rd 3126F
Waltham MA 02154 20220403

I. CONTROLLING OFFICE NAME AND ADDRESS ta. REPORT DATE
-November 1981

Rome Air Development Center (ISIS) I. NU0MROFPAGES
Griffiss AFB NY 13441 31S
14. MONITORING AGENCY NAME AOOESS(1f aiH~fea0 hon CwgummaON *Me) IS. SECURITY CLASS. (of his repe)

Same UNCLASSIFIED
te / ASSIFICATION oroNORADING

IS. DIS-FNRIuTIO01 STATEMENT1 (of If.l ROpMs)

Approved for public release; distribution unlimited.

17. OlSTmIGUTION STATEMENT (.0 Mm. abehe unredi n Stoc k0. ii aalet fram Roet)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Douglas A. White (ISIS)

IS. KEay WOROS(Conaftee. oomr sift If .mesmp duiv0,IeSAb
JOVIAL (J73)
MIL-STD-1589A
Video Course
Higher Order Language

20. ASISTMACT (CanifM. do ,ovOse m004% p m 0"17mfilso.ltbp .k moo"
The JOVIAL (J73) Workbook is only one portion of a self-instructional
JOVIAL (J73) training course. In addition to the programmed-learning
primer/workbooks, are video taped lectures. The workbooks are formatted
to consist of fifteen (15) segments bound in three (3) volumes covering
each particular language capability. A video tape lecture was prepared
for each workbook segment. This course is taught in two parts. Part I
contains twelve (12) segments in Volumes I and II of the workbook; Part II

DO I *A*S 1473 cooInIO of I Nov ss is OssoIee UNCLASSIFIED

SECURITY CLASIFICATION OF TNIS PArE (Wo @sM&M.

UNCLASSIFIED
sgCURIY CLAWFSICATO OF YWmS PAGttAM D.t. ;7tie.0

Volume III contains three (3) segments. There is 'a brief explanatory
introduction at the beginning of the course. Each of the individual
segments deals with a specific feature of the JOVIAL language. The
video tapes act as an overview to outline particular points that are
followed up in the written workbooks. Each tape runs a maximum of 25
minutes and contains an average of 15 graphic each.

UNCLASSIFIED
SgCUrnTY CLASIMPICATIOU OF 1.P pAOuf~uen Doe EfathE)

i. !,

THE JOVIAL (J73) WORKBOOK

VOLUME 10

DIRECTIVES

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center

ISIS
Grifflss Air Force Base, NY 13441

Prepared by

SofTech, Inc.
460 Totten Pond Road

Waltham, MA 02154

OCopyright, SofTech, Inc., 1981

,' " I

PREFACE

This workbook is intended for use with Tape 10 of the JOVIAL (J73)

Video Course. Its purpose is to elaborate upon and reinforce concepts and

language rules introduced in the videotape.

This workbook discusses compiler directives which provide

supplemental information to the compiler for module linkage, optimization,

register control, listing options and other miscellaneous functions. Each

directive is discussed in detail along with its placement. A summary of the

material can be found in Section 14.

1081-1

I. .__7_
li I _ I III -i l II I I III II _I

TABLE OF CONTENTS

Section page

SYNTAX 10:iv

1 INTRODUCTION 10:1-1

2 COMPOOL-DIRECTIVE 10:2-1

3 COPY-DIRECTIVE 10:3-1

4 CONDITIONAL COMPILATION DIRECTIVES 10:4-1

5 LISTING DIRECTIVES 10:5-1

6 INITIALIZE-DIRECTIVE 10:6-1

7 ORDER-DIRECTIVE 10:7-1

8 EXPRESSION EVALUATION DIRECTIVES 10:8-1

9 INTERFERENCE-DIRECTIVE 10:9-1

10 REDUCIBLE-DIRECTIVE 10:10-1

11 REGISTER-DIRECTIVE 10:11-1

12 LINKAGE-DIRECTIVE 10:12-1

13 TRACE-DIRECEIVE 10:13-1

14 SUMMARY 10:14-1

1081-1 10:iii S ibriuig

* I mu u

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax Meaning Sample Expansions

[some-feature] Brackets indicate an some-feature
optional feature. OR

nothing

{one I other} Braces with a vertical one
bar indicate disjunction- OR
a choice between other
alternatives.

his-one e Braces with each feature this-one
that-one1 on separate lines indicate OR

disjunction - a choice that-one
between alternatives.

letter ... The sequence I... I letter
indicates one or more letter letter
repetitions of a feature. letter letter letter

(letter) The sequence ... " (letter)
following a comma (or a (letter) (letter)
colon) indicates one or (letter) (letter) (letter)
more repetitions of the ...
feature separated by
commas (or colons).

[this-one' 1 Syntax symbols may be this-one + (another)
\that-onePI combined, that-one + (ariother)
+ another + (another)

1081-1 10:iv

EllI I

- -. ,

SECTION 1

INTRODUCTION

* I .

INTRODUCTION

Directives are used to provide supplemental information to the

compiler about the program. Directives affect output format, program

optimization, data and subroutine linkage, debugging information, and

other aspects of program processing.

Most directives change the way a program is processed without

changing the computation performed by the program. Perhaps the simplest

example of such a directive is "! EJECT," which starts a new page in the

compiler's listing of the program.

In general, directives can appear after the reserved word START

and before any statement, declaration, or optionally labelled END. Some

directives can only be placed in certain positions.

The form is:

!directive-name [other-information];

All directives begin with an exclamation point and terminate with a semi-

colon.

1081-1 10:1-1 6N R=

SECTION 2

COMPOOL-DI RECT IVE

COMPOOL-DIRECT IVE

A compool-directive makes declarations available from a compool.

The forms are:

COMPOOL compool-file (name((name) ..

COMPOOL (compool-file-name)

Compool-file is a system-defined name for the file that contains the

compool declarations. The form of a compool-file is:

'character ... '

Compool-directives can be given only immediately following START

or immediately following another compool-directive.

A compool-file-name enclosed in parentheses implies that all names

in the compool are to be made available, except those names used in the

compool that were obtained from other compools.

If the compool-directive contains a list of names, only those names

will be made available. When the name of a table or block appears in a

compool-directive, only the name of the table or block and its attributes

given in the heading are made available. If the compool-directive contains

a name of a table or block enclosed in parentheses, all of its component

names will be made available.

The compool-module must be compiled prior to any module which

accesses it. The system may append a suffix on the name of compool-file

which may or may not have to be included in the compool-directive.

Consider a DECSYSTEM-10 which if compiled a compool module

named TEMP would produce a system file named TEMP.CMP. The

compool-directive would have to be of the form:

1081-1 10:2-1 I&Mbcim
m::u~rLTl-i

JI

COMPOOL ('TEMP.CMP'); rather than

COMPOOL ('TEMP');

Example

START COMPOOL TEMPLATES;
TYPE DIMENSIONS

TABLE;
BEGIN
ITEM HEIGHT U;
ITEM WIDTH U;
ITEM LENGTH U;
END

TYPE SEASON STATUS (V(SPR ING),V(SUMMER),
V(FALL) ,V(WINTER));

TERM

START ! COMPOOL('TEMPLATES');
COMPOOL DATA;

TYPE COLOR STATUS (V(RED), V(BLUE), V(YELLOW));
TYPE SIZE TABLE;

BEGIN
ITEM HEIGHT U;
ITEM WEIGHT U;
END

DEF TABLE ROOM(100) DIMENSIONS;
DEF TABLE CODE (V(YELLOW));

ITEM CODENAME C 10;
DEF ITEM LIGHT COLOR;

TERM

Directives Declarations made available for

* COMPOOL 'DATA' (CODE); CODE, CODENAME, COLOR

'COMPOOL 'DATA' CODE; CODE, COLOR

'COMPOOL 'DATA' CODENAME; CODENAME, CODE

'COMPOOL 'DATA' (ROOM); ROOM(100)

'COMPOOL 'DATA' LIGHT; LIGHT, COLOR

COMPOOL ('DATA'); SIZE, HEIGHT, WEIGHT. ROOM.
COLOR, CODE, CODENAME, LIGHT

1081-1 10:2-2

SECTION 3

COPY-DIRECTIVE

Iaa.

~cH

COPY-DIRECTIVE

The copy-directive tells the compiler to copy the text of the

named file into an accessing module at the point at which the directive is

given.

The form is:

COPY file-name

The file name is a character literal, defined by the system.

The copy-directive may be given anywhere in a module.

1081-1 10:3-1

SECTION 4

CONDITIONAL COMPILATION DIRECTIVES

* ho

- ' -4 - _

CONDITIONAL COMPILATION DIRECTIVES

Thrgi directives are defined to provide the capability for

conditional compilation.

These forms are:

!SKIP [letter]

!BEGIN [letter]

'END;

The begin-directive begins a text block and identifies it with a

given letter. The end-directive delimits the conditional block. The

skip-directive identifies the letter associated with the blocks to be

skipped.

In the following example, note that the directives themselves are
not a part of the compiled program.

Example

Source Program Compiled Program

START PROGRAM MAIN; START PROGRAM MAIN;
BEGIN BEGIN
!SKIP Y;
ITEM RESULT U; ITEM RESULT U;
ITEM COUNT U; ITEM COUNT U;
BEGIN X;

REF PROC RND U;; REF PROC RND U;;
RESULT = RND; RESULT = RND;
! END;
!BEGIN Y;
REF PROC RANDOM U;;
RESULT = RANDOM;
!END;
COUNT = 0; COUNT = 0;
CASE RESULT; CASE RESULT;

BEGIN BEGIN
(DEFAULT);; (DEFAULT);;
(1:100): COUNT=COUNT+I; (1:100): COUNT=COUNT+I;
(101:500) :COUNT=COUNT+2; (101:500) :COUNT=COUNT+2;
(501:900): COUNT=COUNT+3; (501 : 900): COUNT=COUNT+3;
END END

END END
TERM TERM

1081-1 10:4-1

. -i

A skip-directive with a letter skips only the block of text starting

with a begin-directive with the same letter.

A skip-directive with no letter skips all blocks of text starting

with a begin-directive.

The text following a begin-directive with no letter can be

suppressed only a skip-directive with no letter.

1081-1 10:4-2

SECTION 5

LISTING DIRECTIVES

I.,-

C.

* *-5.

LISTING DIRECTIVES

The listing directives modify the output listing and may be given

anywhere in the module.

The listing-direct"h'es are:

!JOLI ST,

L T;

NOLiST suppresses the source listing until the end of the module

or until it is re-dnabled.

! LIST enables the source listing until the end of the module or

until it is suppressed.

!EJECT inserts a page eject in the source listing.

1081-1 10:5-1

J ,m il - -|I II ilI l

* --.~r~.... "

SECT ION 6

INITIALIZE-DIRECTIVE

I__
-l -- -- . . --I ~-

INITIALIZE-DIRECTIVE

The initialize-directive is used to set to zero bits all static data

that is not otherwise initialized.

The form is:

!INITIALIZE

The initialize-directive can be given only before a non-nested

data declaration. It has effect from the point at which it is given until

the end of that scope.

For example:

START PROGRAM SAMPLE;
BEGIN
ITEM TRAILS F;
ITEM NAME C 0;

!INITIALIZE;
ITEM COUNT U,
TABLE SEC(100);
BEGIN
ITEM LENGTH U;
ITEM WIDTH U = 101(5);
ITEM HEIGHT U;
END

END
TERM

TRAILS and NAME have unknown initial values; COUNT and all 101

LENGTHS and HEIGHTS are initialized to all zero bits. All 101 WIDTHS

are explicitly preset to 5. Character items following an initialize-

directive are also initialized to all zero bits, NOT blank characters.

1081-1 10:6-1

Fl

SECT ION 7

ORDER-DIRECTIVE

..

ORDER-DIRECTIVE

The allocation-order-directive instructs the compiler to allocate

data in the order in which it is given.

The form is:

ORDER

It can be given only as the first entity in block-body or table entry-

description. It only has effect on the table or block in which it is given.

Consider the following table declaration:

TABLE PARTS(1000) D;
BEGIN
ITEM ID U 5;
ITEM NUMBER U;
ITEM FLAG B;
END

The compiler may rearrange the allocation order and conserve storage.

However, consider the following table-declaration:

TABLE PARTS(1000) D;
BEGIN
!ORDER;
ITEM ID U 5;
ITEM NUMBER U;
ITEM FLAG B;
END

The compiler may not rearrange allocation order.

An order-directive may be given in a type-declaration. When the

type-name containing the order-directive is used, the order-directive

applies to all objects declared of that type.

1081-1 10:7-1

Given the following table:

TABLE PARTS(1000) D;
BEGIN
ITEM ID U 5;
ITEM NUMBER U;
ITEM FLAG B;
END

The letter D in the table-attributes indicates dense packing. If the

compiler is allowed to change the order of allocation, it can allocate ID

and FLAG in a single word and conserve storage. (Not all compilers

perform this sort of rearrangement.) However, if the programmer wants

to be certain that no rearrangement occurs, he can include an allocation-

order-directive as follows:

TABLE PARTS(1000) D;
BEGIN
! ORDER;
ITEM ID U 5;
ITEM NUMBER U;
ITEM FLAG B;
END

1081-1 10:7-2

.

SECTION 8

EXPRESSION EVALUATION DIRECTIVES

n~ ~~ ~~~~~~~~~~~~ ...a LT 7" "

EXPRESSION EVALUATION DIRECTIVES

The expression evaluation directives indicate whether or not the

compiler is free to rearrange computations within a formula.

The forms are:

LEFTRIGHT; Indicates evaluation of operators
at the same precedence level must
be done from left to right.

!REARRANGE; Indicates that operators at the
same precedence level may be
evaluated in any order, as long as
the commutative, associative, and
distributive laws are observed.

These directives can be given anywhere a directive can be given. The

compiler defaults to !REARRANGE.

The effect of an evaluatV n order directive extends from the point

at which it is given to the end of the scope or to the next evaluation

directive, whichever comes first.

Given the following formula:

HEIGHT*LENGTH *WlDTH

If no evaluation-order-directive is given, the compiler can

rearrange the formula as follows:

LENGTH*HEIGHT*WIDTH

Or it can rearrange in any other way to produce efficient code. However,

if the leftright-directive is in effect, the compiler must first multiply

HEIGHT times LENGTH and then multiply the result by WIDTH.

Consider the following expression:

COUNT + SUM + FACTOR

1081-1 10:8-1 l

This expression is algebraically equivalent to the following expressions:

SUM + COUNT + FACTOR

SUM + FACTOR + COUNT

FACTOR + COUNT + SUM

FACTOR + SUM + COUNT

COUNT + FACTOR + SUM

If a rearrange-directive is in effect, the compiler can use any of the

of the above expressions in place of the original expression.

If a leftright-directive is in effect, the compiler can use only

the specified expression for evaluation.

NOTE: !LEFTRIGHT is most useful when a rearrangement

of the operands could cause an overflow or an underflow

condition.

Example

If MAXINTSIZE = 15, MAXINT (15) = 2's - 1 = 32768 - 1, and the

largest integer the compiler will accept is 32767. Consider the following

expression:

32767 + (-32767) + 100

The value of the first operand approaches the limit of the compiler.

To prevent the compiler from rearranging the evaluation order a

leftright-directive may be given before the expression. A rearrange-

directive given after the statement returns the evaluation order to the

default mode.

1081-1 10:8-2

SECTION 9

INTERFERENCE-DIRECTIVE

* 5= , ,_ ... _c .. . H

INTERFERENCE-DIRECT IVE

The interference-directive is used to inform the compiler that it

cannot assume that the storage for the given names is distinct. The form

of the interference-directive is:

!INTERFERENCE data-name : data-name ;

The interference-directive indicates that the storage for the first

data-name is not necessarily distinct from the storage for the list of data

names following the colon.

The names given in the interference-directive must have been

previously declared.

If an interference-directive is not given, the compiler assumes that

distinct data names refer to distinct storage and makes optimizations based

on that assumption.

The compiler is aware of storage that overlaps because of language

features that allow overlaying. However, there are cases in which the

compiler is not aware of overlaps and for these cases an interference

directive must be given. For example, if two data objects are assigned

the same absolute address in different overlay-declarations, an interference-

directive should be used to warn the compiler.

An interference-directive can be given only before a declaration.

As an example of the use of the interference-directive, consider

the following:

TABLE PARTS(10);
ITEM PARTNO U;

ITEM SIZE F;
ITEM ID F;
OVERLAY POS(3310) PARTS;
OVERLAY POS(3314) SIZE;

INTERFERENCE PARTS : SIZE, ID;

This directive informs the compiler that it should not assume that

the storage for PARTS is distinct from the storage for SIZE and ID.

1081-1 10:9-1 1 EI

SECTION 10

REDUCiBLE-DIRECTIVE

,-

-II-i------ I i-iI-i-----

REDUCIBLE-DIRECTIVE

The reducible-directive is used to allow additional optimizations

of function calls. The form is:

!REDUCIBLE

A reducible function is one that has the following characteristics:

* All calls with identically valued actual parameters result
in identical function values and output parameter values.

* The only data that is modified by the function call is
that data declared within the function.

The compiler can, in some cases, detect the existence of common

calls on a reducible function, save the values produced by the first call,

delete subsequent calls and use the values produced by the first call.

A reducible-directive is given following the semicolon of the function

heading. A reducible function must have the reducible-directive in its

definition and all its declarations.

Trigonometric functions are good examples of reducible functions.

SIN(ANGLE) always produces the same result for the same value of ANGLE

and the function has no side effects.

1081-1 10:10-1

L!

SECTION 11

REGISTER DIRECTIVES

REGISTER DIRECTIVES

Register directives are used to affect target-machine register

allocation. Three register-directives are defined, namely:

BASE data-name register-number;

ISBASE data-name register-number;

DROP register-number;

Register-number is an integer literal that specifies the register in

a target-machine-dependent way.

The base-directive instructs the compiler to load the specified

register with the address of the given data-name. This base-directive

instructs the compiler to assume that the specified register contains the

address of the data object. The drop-directive frees the specified

register for other use by the compiler.

Register allocation is not meaningful for all machines. Register

directives are ignored for machines that do not use registers.

The register directives may be given anywhere a directive may

be given.

NOTE: Most often, the optimizer on the compiler con

determine the optimal register allocation; register directives

should be used carefully and ONLY to fine tune a program.

1081-1 10:11-1

2 . -, - -

SECTION 12

LINKAGE-DIRECTIVE

* c

LINKAGE-DIRECTIVE

The linkage-directive is used to identify a subroutine that does not

have standard J73 linkage.

The form is:

!LINKAGE symbol ...

A linkage-directive can be given only in a subroutine declaration

or definition. It is given between the heading and the formal parameter

declarations.

For example, a JOVIAL (J73) program may call a subroutine

(WRTCEL) written in another language, in this case FORTRAN.

START PROGRAM CELSIUS;
BEGIN
REF PROC WRTCEL (ICEL, IFAH);

!LINKAGE FORTRAN;
BEGIN
ITEM ICEL S 31;
ITEM IFAH S 31;
END

WRTCEL (CELSIUS, FAHRENHEIT);
END

TERM

The linkage-directive is given in the subroutine-declaration,

the REF PROC, to indicate what kind of linkage mechanism is to be used.

1081-1 10:12-1 WRbcraH.

!-

SECTION 13

TRACE-DIRECTIVE

:...c

. . .o

TRACE-DIRECTIVE

The trace-directives are used to follow program execution and

monitor data assignments. The trace-directive has one of the following

forms:

!TRACE (control) name

!TRACE name

The first form of the trace-directive is a conditional trace. It

causes tracing only if control, which is a Boolean formula, is TRUE. The

second form is an unconditional trace.

The names given in the trace-directive are the names to be traced.

A name can be a statement name, a subroutine name, or a data name.

* For a statement name, the trace notes each time the
associated statement is executed.

0 For a subroutine name, the trace notes each call on
the subroutine. If the subroutine name given is the
subroutine that contains the trace-directive, the trace
notes both entry to and exit from the subroutine.

* For a data name, the trace notes any modification
of the value of the data object. The new value is included
in the trace printout. If the data name is a table, the
trace notes any modification of a table item, a table
entry, or the entire table. If the data name is a block,
the trace notes modification of any enclosed object.

Data names given in the control or as names to be traced must be

declared previously. Statement or subroutine names can be declared later.

A trace-directive can be given only before a statement. It applies

from the point at which it is given to the end of the scope.

1081-1 10:13-1

-.. ,s m L ., , i _ III I_ J

SECTION 14

SUMMARY

'K

SUMMARY

Directives provide supplemental information to the compiler about

the program. Directives affect output format, program optimization,

data and subroutine linkage, debugging information and other aspects of

program processing.

The class and forms are:

Class Directive Form

compool ! COMPOOL (compool-file);
!COMPOOL compool-file name

text !COPY file;
! SKIP letter;
!BEGIN letter;
END;

listing 'LIST;
NOLIST;
EJECT;

initialization !INITIALIZE;

allocation-order ! ORDER;

evaluation-order !LEFTRIGHT;
!REARRANGE;

interference !INTERFERENCE data-name: data-
name ,... ;

reducible REDUCIBLE;

register BASE data-name register-number;
ISBASE data-name register-number;
DROP register-number;

linkage !LINKAGE symbol;

trace !TRACE (control) name ...

! TRACE name ...

-- "- - L I Ii I ii I I_ _- I l

18 1- !01 -

jj6

THE JOVIAL (J73) WORKBOOK

VOLUME 11

DEFINE CAPABILITY

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center

ISIS
Griffiss Air Force Base, NY 13441

Prepared by

Sof'lech, Inc.
460 Totten Pond Road

Waltham, MA 02154

@Copyright, SofTech, Inc., 1981

PREFACE

This workbook is intended for use with Tape 11 of the JOVIAL (J73)

Video Course. Its purpose is to elaborate upon and reinforce concepts and

language rules introduced in the videotape.

The JOVIAL (J73) language has a define macro capability which

provides the programmer with the ability to do textual substitution at any

point in the program. This workbook discusses how these DEFINE's are

declared and used. The final section is a summary of the information

presented in this segment.

'C ~00-f

TABLE OF CONTENTS

Section Page

SYNTAX 11:iv

1 THE DEFINE-DECLARATION 11-•1-1

2 DEFINE-CALLS 11:2-1

3 DEFINE-DECLARATIONS AND DEFINE-CALLS 11:3-1
WITH PARAMETERS

4 NESTED DEFINE-CALLS 11:4-1

5 LIST-OPTION 11:5-1

6 SUMMARY 11:6-1

1081-1 113:il rOF1 d

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course
and workbook are as follows:

Syntax Meaning Sample Expansions

[some-feature] Brackets indicate an some-feature
optional feature. OR

nothing

{one I other} Braces with a vertical one
bar indicate disjunction- OR
a choice between other
alternatives.

/this-one) Braces with each feature this-one
.that-one on separate lines indicate OR

disjunction - a choice that-one
between alternatives.

letter .. The sequence I...' letter
indicates one or more letter letter
repetitions of a feature. letter letter letter

(letter) The sequence ". (letter)
following a comma (or a (letter) (letter)
colon) indicates one or (letter) (letter) (letter)
more repetitions of the
feature separated by
commas (or colons).

this-onel Syntax symbols may be this-one + (another)
that-one/J combined, that-one + (another)
+ another + (another)

1081-1 11:iv

-- - - - - --I.II-L- *I --I

SECTION 1

THE DEFINE-DECLARATION

DEFINE-DECLARATION

A define-declaration is used to declare the name of a macro and

to associate text with that name.

In its simplest form, a define-declaration associates a name with a

string. The form is:

DEFINE define-name " define-string ";

The define-name is a programmer supplied name. The define-string can

be any string of characters, including blanks, within enclosing 'quotes.

The exclamation point (!) and quote character (") both have

special meaning with a define-string. Thus, these characters must be

doubled to be interpreted literally.

Examples of define-strings:

113.5 * VELOCITY + EPSILON" yields 3.5 * VELOCITY + EPSILON

"The CHARACTER ""A""" yields THE CHARACTER "A"

"HELP!!" yields HELP!

Examples of define-declarations:

DEFINE APPROXIMATION "3.5 * VELOCITY + EPSILON";

DEFINE DIRECTIVE "!! COPY 'STATUSDECLS";

DEFINE LOOP

"FOR I : 1 BY 1 WHILE I <= 5;

BEGIN ""FOR LOOP""

SUM = SUM + VALUE(I);

IF SUM = 0;

EXIT;

END ""FOR LOOP""";

S10.1.1 1..

The first declaration associates the name APPROXIMATION with a

formula. The second define-declaration declares the name DIRECTIVE to

be associated with a ! COPY-directive. The third define-declaration

declares LOOP to expand into a for-loop with comments.

* 1081-1 11:1-2

t

SECT ION 2

DEFINE-CALLS

DEFINE-CALLS

A define-call directs the compiler to make a copy of the define-string

associated with the define-name. A define that is declared as:

DEFINE define-name "define-string";

is invoked by simply giving the define-name.

To invoke the define-declaration:

DEFINE APPROXIMATION "3 * VELOCITY + EPSILON";

simply state:

APPROX IMAT ION

When the compiler sees APPROXIMATION it substitutes the associated

define-string 3 * VELOCITY + EPSILON. For example:

F" SUM = APPROXIMATION;

The compiler would obtain the following after substitution:

SUM = 3 * VELOCITY + EPSILON;

The compiler only interprets a define-call that is a symbol within

the program. It does not process the characters within comments and

character literals; a define-call in either of those places is not expanded.

A define-call must not appear as a formal parameter to a subroutine or as

a part of a subroutine-heading.

1081-1 11:2-1 Move- ci~

SECTION 3

DEFINE-DECLARAT IONS AND DEFINE-CALLS

WITH PARAMETERS

DEFINE-DECLARATIONS AND DEFINE-CALLS
WITH PARAMETERS

A define-declaration may contain parameters, as follows:

DEFINE define-name (define-formal, ...) "define-string";

The character sequence " " indicates that one or more define-

formals can be given separated by commas.

A define-formal is a single letter. Within the parenthesized
parameter list, define-formals are indicated by that single letter. Within

the define-string, define-formals are indicated by that letter preceded by

an exclamation point. A define-formal receives its value from the

corresponding define-actual given in a call on the define-name.

For example, to provide a convenient notation for incrementation,

you can define a name TALLY and associate it with the following string:

DEFINE TALLY(A) "'A = !A + 1" ;

The define-name TALLY has one define-formal, A, associated with it.

1081-1 11:3-1/11:3-2

DEFINE-DECLARATIONS -- EXERCISES

Indicate whether the following define-declarations are correct or
incorrect.

DEFINE-DECLARATIONS CORRECT INCORRECT

DEFINE DEFA (A, B, C,) "!A + !B + 5";

DEFINE DEFB (ALPHA, BETA) "!ALPHA +

! BETA";

DEFINE A "3 + VELOCITY";

DEFINE DEFC(A,8,C) "!A + !8 + C";

DEFINE CIRC "EXAMPLE: CIRC"

DEFINE TESTA(A,B,C,A,F) "(!A + !B)/
!C = !F";

DEFINE DTEST(A,B) "!A + !B + !C";

DEFINE DEFE %THIS IS A COMMENT%"3 * VELOCITY" ;

DEFINE DEFF "THIS IS A COMMENT""3 * VELOCITY"

1081-1 11:3-3 S 1.c iE

i

ANSWERS

Indicate whether the following define-declarations are correct or

incorrect.

DEFINE-DECLARATIONS CORRECT INCORRECT

DEFINE DEFA(A,B,C,) "!A + !B + 5"; X

DEFINE DEFB(ALPHA, BETA) "!ALPHA + X
!BETA"; (A define-formal

must be a single
letter)

DEFINE A "3 + VELOCITY";
X

DEFINE DEFC(A,8,C) "!A + !8 + !C"; X
(a number is not
allowed as define-
formal)

DEFINE CIRC "EXAMPLE: CIRC" ; X
(Circular define-
declarations are
not allowed)

DEFINE TESTA(A,B,CA,F) "(!A + !B)/ X
!C = !F"; (Define-formal

must be unique)

DEFINE DTEST(A,B) "!A + !B + !C"; X
(Define-string
cannot reference
undeclared
parameter)

DEFINE DEFE %THIS IS A COMMENT%
"3 * VELOCITY" ; X

DEFINE DEFF "THIS IS A COMMENT" X (NOTE: "THIS IS A
3 * VELOCITY" ; COMMENT" will be used

as the define-strir'h and
"13*VELOCITY" wii be

treated as a comment.)

1081-1 11:3-4

- tt,

DEFINE-CALLS WITH DEFINE-ACTUALS

Consider the following example:

DEFINE SWITCH (A, B, C, D, E, F

"IF !A;

GOTO ! D;

ELSE

IF ! B;

GOTO ! E;

ELSE

IF !C;

GOTO ! F;

~ELSE
ESGOTO ERROR(5);";

The define-name SWITCH is declared with six parameters, the

single letters A, B, C, D, E and F. When they are referenced in the

define-string, the single letter define-formals are preceded by exclamation

points.

A DEFINE that is declared with a define-formal parameter list must

be called with a define-actual parameter list. The form is:

define-name [(define-actual,..)]

The above example could be invoked by:

SWITCH(READY, SET, GO, ENABLE, STEADY, TAKEOFF);

1081-1 11:3-5 01

Result

IF READY;

GOTO ENABLE;

ELSE

IF SET;

GOTO STEADY;

ELSE

IF GO;

GOTO TAKEOFF;

ELSE

GOTO ERROR(S);

A define-actual can be any sequence of characters, or a null string.

A null string is substituted for every define-actual not named. A define-

actual is delimited as follows:

Use the characters up to and including either the first right

parenthesis not balanced by a left parenthesis or the first

comma that is not within a pair of balanced parenthesis.

Double quote characters can be used to represent an actual not

representable by the above rules.

A double quote character is represented by two double quotes in
a define-actual.

Examples

MAX((,), (.))

MAX (A, B)

MAX("A, B")

1081-1 11:3-6

Given that the define-name COMPUTE requires three parameters

consider the following:

Define-Call Parameter 1 Parameter 2 Parameter 3

COMPUTE(A,B,C,) A B C

COMPUTE(A(IJ), B,C) A(I,J) B C

COMPUTE(A,,C) A (null) C

COMPUTE(A,B) A B (null)

COMPUTE((A, B), C, D) (A,B) C D

COMPUTE("A, B", C,D) AB C D

All names in the program that are generated by DEFINE's must be

declared.

Generated names, however, cannot be declared using a define-

declaration. They must be declared in the usual way.

Example

DEFINE NEWNAME(A, B) "ITEM !A$$$!B U 5";

NEWNAME(S, T); yields ITEM S$$$T U 5;

Use

NEWNAME(S, T) = FACTOR / 12;

yields ITEM S$$$T U 5 z FACTOR / 12;

1081-1 11:3-7/11:3-8 mom ci.I

ACTUAL PARAMETERS -- EXERCISES

Indicate the number of actual parameters in each define-call and

show what the parameters are:

Define-Call No. Parameter 1 Parameter 2 Parameter 3

DISPLAY ((A, B,C,))

DISPLAY (ALPHA, ,B)

DISPLAY((, (,)), ()

DISPLAY ("A, B", C)

DISPLAY ("""")

DISPLAY()

1 11
1081-111:3-

ANSWERS

Indicate the number of actual parameters in each define-call and

show what the parameters are:

Define-call No. Parameter 1 Parameter 2 Parameter 3

DISPLAY((A,B,C)) I (A, B, C)

DISPLAY (ALPHA, B) 3 ALPHA null B

DISPLAY((,(,)),(),) 3 (,(,) () null

DISPLAY ("A,B",C) 2 A, B C

DISPLAY("""") 1

DISPLAY() 0

1081-1 11:3-10

SECTION 4

NESTED DEFINE-CALLS

NESTED DEFINE-CALLS

A define-call may be nested in a define-actual parameter. A

define-call that is part of a define-actual is expanded if after the

substitution of the define-actual, the define-call is a symbol and not part

of a symbol.

Example

DEFINE DEF1(AJ "ARG!A = !A";

DEFINE TRIG "COS";

DEFl(TRIG) yields ARGTRIG = TRIG

then ARGTRIG = COS

When the call to DEFI is encountered with TRIG as the argument,

TRIG is substituted for the define-formal, and the resulting text is
r scanned for any further define calls. The TRIG define-call is encountered

and COS is substituted.

Define-calls may also be nested in define-strings. The compiler, in

expanding a define-call, first makes a copy of the associated define-string.

It then substitutes the actual parameters for the formal parameters. It

then examines the resulting string to see if any further expansion can be

performed.

Example

DEFINE TI(A,B) #! A/!B**EXP;

DEFINE EXP "2";

Ti(XPOINT,YPOINT) yields XPOINT IYPOINT**EXP

then XPOINT/YPOINT**2

1081-1 11:4-1

- ~--

When the call to T1 is encountered, the 2 define-actuals are

substituted for the define-formals, and the resulting text is scanned for

any further define-calls. The EXP define-call is encountered and the

associated text is substituted.

11

.4i 1081-1 11:4-2,I

DEFINE-CALL -- EXERCISES

Given the following define declarations, expand the define-calls:

DEFINE DEFA(A,B,C) "'A:!A, B:!B, C:!C"';

DEFINE DEFB(A) "SINTMDA=!A;";

DEFINE DEFC(B) "(3 + (!B))";

DEFINE DEFD "4";

DEFINE DEFE(A) "'Al"';

DEFINE DEFF(A,B) "'ABC !A DEF !B'";

Define-Call Yields

DEFA ("ATEXT")

DEFA(I"ATEXT",,)

DEFA("ATEXT", "", "CTEXT ")

DEFB (DEFC (DEFD)

DEFE ("""TEST! """)

DEF((XYZ{,)),MN OP)

1081-1 11:4-3

ANSWERS

Define-Call Yields

DEFA("IATEXT"l) 'A:ATEXT, B: , C:I

DEFA("-ATEXT"-,,) 'A:ATEXT, B: , C:'

DEFA("IATEXT"-, ""ll "ICTEXT"I) 'A :ATEXT, B: , C :CTEXT'

DEFB (DEFC (DEFD) SIN4-MDA =DEFE(DEFD);

then SIN+MDA = 3 + (DEFD);

then SIN+MDA = 3 + 4;

then SIN+MDA = 7;

DEFE (""TEST! "")'TEST!"'I

DEFF((XYZ(,)),MN OP) #ABC (XYZ(,)) DEF MN OP'

1081-1 11:4-4

SECTION 5

LIST-OPTION

! ,

LIST-OPTION

A define-declaration can also include a list-option, which describes

how much information is to be given in the output listing. The general

form of the define-declarations is:

DEFINE define-name [(define-formal)] [list-option]

"define-string"

The square brackets indicate that both the parenthesized list of define-

formals and the list option are optional.

The list option lets you specify whether you want to see the define-

string in your program, or the define-call, or both. The list options are:

LISTEXP Include the expanded define-string in the

listing in place of the define-call.
LISTINV Use the define-call in the listing and do not

include the expansion.

LISTBOTH Include both the define-call and the resulting
expansion in the listing.

The exact format of the output listing is implementation dependent.

1081-1 11:5-1 5 I cIE

-.- -~ -- ~ -I

SECTION 6

SUMMARY

SUMMARY

The complete form of a define-declaration is:

DEFINE define-name [(define-formal, ...)]

[list-option] " define-string

A define-formal is a single letter. The define-formal is preceded

by an exclamation point when used in a define-string. Define-formals are

optional.

The list-options are:

LISTEXP -- List expanded define-string in
place of define-call.

LISTINV -- List the define-call and not the
expansion.

LISTBOTH List both the define-call and the
expansion.

A define-string has the form:

character ...

The double quote and the exclamation point characters must be doubled to

appear in the define-string. A define-string may contain a define-call.

The form of a define-call is:

define-name [(define-actual, ...)]

Define-actual has the form:

character ...

A define-actual is deliminted by the first comma not within a pair

of balanced parenthesis, an unbalanced right parenthesis, or a pair of

double quotes.

1081-1 11:6-1

A double quote is represented by two double quotes in a define-

actual.

A null string is substituted for any missing define-actuals.

A define-actual may be a define-call. A define-call that is part of

a define-actual is expanded after the substitution of the define-actual.

11

1081-1 11:"6-2

-a--.

SECTION 2

TABLE STRUCTURE AND LAYOUT:

SPECIFIED TABLES

I, c.

SPECIFIED TABLES

A specified table is one in which each item is explicitly positioned

by the programmer.

A specified table may be used in any context in which an ordinary

table may be used. It may also be used in a type-declaration to create

a template for any number of tables with a particular layout. A specified

table is often used to interface with some peripheral device that produces

its information in a specified format.

A specified table has the same general form as an ordinary table:

TABLE table-name table-attributes

entry-description

The specified table-kind is given in the table-attributes instead

of a packing-spec, as follows:

I dimension-list I I structure-spec] [table-kind 1

The table-kind indicates whether the table has fixed-length

entries or variable-length entries. The forms are:

W [entry-size]

V

W indicates that the table has fixed-length entries. Entry-size

is an integer formula known at compile-time that gives the number of

words each entry occupies for a fixed-length entry table. V indicates

that the table has variable-length entries.

POS-CLAUSE

The position of each item in a specified table entry is given by a

pos-clause following each item-description in the table, as follows:

ITEM item-name item-description

POS (starbit, startword

1081-1 9:2-1 OCH

B

Startbit and starvvord are integer formulae known at compile-time.

The first bit of a word is n.umbered 0; the first word of an entry is

numbered 0.

Item positioning must take into account the number of bits in a

word. An item that occupies one word or less must not be positioned so

that it crosses a word boundary.

NOTE: An implementation may restrict legal stortbit

values for pointers that are initialized.

Example

ITEM INDEX U 5 POS(0,1);

Index is to be positioned starting at bit zero of word one.

THE * STARTBIT CHARACTER

Every item in a specified table must be positioned. The asterisk

character (*) may be used for startbit to indicate that the item should

be allocated as if it were declared outside the specified table. In this

way, the item may be accessed efficiently.

Given the following declaration for a specified table:

TABLE SURVEY (10) W 5;

BEGIN

ITEM FLAG B 3 POS (10, 0);

ITEM HISTORY B 10 POS (0, 0);

ITEM CASE1 U POS (*, 1);

ITEM CASE2 U POS (*, 2);

END

The items FLAG and HISTORY are positioned in word 0 of each

entry as indicated. The items CASE1 and CASE2 are positioned normally

in words 1 and 2 of each entry for efficient usage.

1081-1 9:2-2

FIXED LENGTH ENTRY TABLES

A specified table with fixed-length entries is indicated by the

table-kind W optionally followed by the entry-size. A specified table

with fixed-length entries may contain information about the structure

and initial values. The form is:

TABLE table-name [dimension-list I [structure-spec]

W [entry-size] [table-preset I;

BEGIN

ITEM item-name item-description

POS (startbit . startword) [table-preset 1;

END

Examples

1) The following table-declaration may be used to match the format of

a particular hardware device:

TABLE DEVICE (5) W 2;

BEGIN

ITEM CHANNEL1 U 10 POS (0, 0);

ITEM CHANNEL2 U 10 POS (0, 1);

END

The table is a fixed-length entry specified table having six entries.

Each entry occupies two words. The first word of each entry contains

the item CHANNEL1 in bits 0 through 9. The second word of each entry

contains the item CHANNEL2 in bits 0 through 9. If BITSINWORD is 16,

table DEVICE may be diagrammed as follows:

1081-1 9:2-3

-

DEVICE

CHANNEL1 (0) word 0

CHANNEL2(0) word I

CHANNEL1(1) word 0

CHANNEL2(1) I word 1

2) Given the specified table declaration:

TYPE COMMUNICATIONLINK (10) PARALLEL W 2;

BEGIN

ITEM CODE U POS(0, 0);

ITEM ID U 3 POS(0, 1);

ITEM RANGE S 11 P05(3, 1);

ITEM RATE A 6, 4 POS(3,1);

END

If BITSINWORD is 16, the table can be diagrammned as follows:

CODE(O)

CODE(1)

CODE(1O0)

ID(0) 0AGEJ
RATE(0)

113D(1) RANGECI)
I RATE(1)

ID1(10)1 RANGE(lO)
I I RATE(10)

1081-1 9: 2-4

TIGHT STRUCTURE

The entry-size for a specified table with fixed-length entries is

given following the W in the table-kind. The entry-size for a specified

table with fixed-length entries and tight structure is determined by the

bits-per-entry either given or assumed for the structure-spec. If a

specified table has tight structure, entry-size must not be given as part

of the table-kind.

Given the following table-declarations:

TABLE SWITCHES (9) T W;

BEGIN

ITEM RDY B POS (0, 0);

ITEM STAT U 5 POS (1, 0);

END

Each entry contains a one-bit item and a five-bit item. Since the

structure-spec does not specify bits-per-entry, the compiler uses the

minimum number of bits necessary to represent an entry, six bits.

If BITSINWORD is 16, SWITCHES may be diagrammed, as follows:

SWITCHES

RDY STAT RDY I STAT

() 0() (1) ,, (1)

RDY STAT RDY: STAT;

(8) (8) (9) (9)

The starting bit in the pos-clause is assumed to be relative to the

start of an entry. The item READY(l) is allocated at bit 6 of the first

word. Its position, however, is bit 0 relative to the start of the entry.

Bits 12-15 of each word are unused.

1081-1 9:2-5

Bits-per-entry may be specified so that whole entries of the table

are allocated on addressable boundaries. For example, if BITSINWORD is

16 and BITSINBYTE is 8, the following declaration may be written:

TABLE SWITCHES (9) T 8 W;

BEGIN

ITEM RDY B POS (0, 0);

ITEM STAT U 5 POS (0, 1);

END

SWITCHES may be diagrammed, as follows:

SWITCHES

I RDY STAT 1 RDY STAT:
(0) (0) ' (9) (1)

RDY, STAT , RDY I STAT'(8) (8) 1 1 (9) .1 (9) .

As a further example consider the following table diagrammed

below:

TABLE DRIVER(9) T W;

BEGIN

ITEM READY B POS(0, 0);

ITEM STATBIT U 5 POS(2, 0);

END

1081-1 9:2-6

BITSINWORD = 16

1 2 6 79 . 131.15

R SAI R TATBIT()(0) v) SSTATBT) 1

1 STATBIT(2) _STATBIT(3)
(2) (3)

(R TATBIT(8) R STATIT(I
i~~9 N,,,,,,

2 entries/word

5 words

If table DRIVER specified 8 bits per entry with tight structure, it

would look like this:

TABLE DRIVER(9) T 8 W;

BEGIN

ITEM READY B POS(0, 0);

ITEM STATBIT U 5 POS(2, 0);

END

BIT 0 BIT 15
q 1 2 6 7 8 9 10 l i

R ,R R _ _ _ _ _

(0) STATBIT(O) (1) x STATBIT(l)

R R /
(2) STATBIT(2) (3) STATBIT(3)

(8 STTBT(X1(9 S TATBIT(9) IN
1081-1 9:2-7 S lcH

I

PRESETS

Specified tables may have presets like ordinary tables. If a table-

preset is given in the table-attributes, none of the item-declarations

within the entry-description may have table-presets. If two items over-

lap, only one item may be preset.

Examples

1) Given the following table-declaration:

TABLE SPECS (100) W 2 = 2, 4,,,6,8,,,10,12;

BEGIN

ITEM LENGTH U POS (0, 0);

ITEM HEIGHT U POS (0, 1);

ITEM HIPOINT U 8 POS (0, 1);

ITEM LOPOINT U 8 POS (8, 1);

END

The items are initialized in order and values are omitted for over-

layed items. The value 2 presets LENGTH(0), 4 presets HEIGHT(0). The

omitted values prevent HIPOINT and LOPOINT from being initialized.

The value 6 presents LENGTH(1), and so on.

2) TABLE COMMUNICATIONLINK (10) W 2 11(1,1,21,);

BEG IN

ITEM CODE U POS(0, 0);

ITEM ID U 3 POS(0, 1);

ITEM RANGE S 11 POS(3,1);

ITEM RATE A 6,4 POS(3,1);

END

1081-1 9:2-8

-- --i--.- ~ -r-- ------

BITSINWORD =16

BITO BIT3 BIT 15

CODE I WORD 0

IDl RANGE=21 WORD 1
ID=1 RATE

COMMUNICATIONLINK (0

1081-1 9:2-9/9:2-10 0 1 c-

SPECIFIED TABLES -- EXERCISES

Assuming BITSINWORD is 32 and BITSINBYTE is 8, diagram the

following table:

TABLE PERSONNEL W 4;

BEG IN

ITEM FLAG B 3 POS(1OO0);

ITEM NAME C 4 POS(O, 1);

ITEM RANK C 2 POS(O, 2);

ITEM ID C 4 POS(O,1);

ITEM RATING C 2 POS(16, 2);

ITEM CASE1 U (*3);

END

1081-1 9:2-11 O , 5 .

ANSWERS

Assuming BITSINWORD is 32 and BITSINBYTE is 8, diagram the

following table:

TABLE PERSONNEL W 4;

BEGIN

ITEM FLAG B 3 POS(10,0);

ITEM NAME C 4 POS(0,1);

ITEM RANK C 2 POS(0,2);

ITEM ID C 4 POS(0, 1);

ITEM RATING C 2 POS(16,2);

t ITEM CASEI U (*, 3);

END

0 15 16 31

(F (word 0

4- NAME
4. ID ,__ word 1

4I--RANK --. IRATING word 2

CASEI word 3

1081-1 9:2-12

& 1 ==l I 11 T "-- tmj III

SPECIFIED TABLES -- EXERCISES

Assuming BITSINWORD is 16 and BITSINBYTE is 8, diagram the

following table:

TABLE SPECS(10) W 2 = 2,4,,,6,8,, 10,12;

BEGIN

ITEM LENGTH U POS(0,0);

ITEM HEIGHT U POS(0,1);

ITEM HIPOINT U 8 POS(0,1);

ITEM LOPOINT U 8 POS(8,1);

END

. .8.- - :2-13.. ... ru9:u1

ANSWERS

Assuming BITSINWORD is 16 and BITSINBYTE is 8, diagram the

following table:

TABLE SPECS(10) W 2 = 2,4,,,6,8,,,10,12;

BEGIN

ITEM LENGTH U POS(0,0);

ITEM HEIGHT U POS(0,1);

ITEM HIPOINT U 8 POS(0,1);

ITEM LOPOINT U 8 POS(8, I);

END

0 7 815

-.) -LENGTH(O) = 2 I word 0

HEIGHT(O)
=

4 .0

4-H, O THIPO]NT(O) - 1 ----- LOPOINT(O) ----- 41 word I

4 LENGTH(l)
= 6 word 0

4 HEIGHT(l) = 8
4 - H I P O IN T (l) -- - -I 4 L O P O IN T (l) -- -- -0 w o r d I

4 LENGTH(2) a 10 P, word 0

4, HEIGHT(2)
=

12 I word I

, H IPO INT (2) ----- 4@ LOPOINT(2) o

qLENGTH(3) . ,word 0

4 HEIGHT(3) > word 1

I-* - HIPOINT(3) ------ b- ,, LOPOINT(3)

1081-1 9:2-14

. . . '..... " - ll i " ° '. ..A. . . .

VARIABLE LENGTH ENTRY TABLES

A table with variable-length entries in JOVIAL (J73) is indicated

by the table-kind V. Each logical entry of the table may be composed of

different numbers of physical entries (words).

A table with variable-length entries provides a way to save space

by eliminating unnecessary items from entries, but it is the programmer's

responsibility to keep track of where each logical entry begins.

A specified table with variable-length entries may not contain a

structure-spec or a table-preset. The form is:

TABLE table-name dimension-list V;

BEGIN

ITEM item-name item-description

POS (startbit , startword) ;

END

A physical entry in a table with variable-length entries is one

word long. A logical entry in such a table may be composed of many

items and may be several words long. The dimensions in a table with

variable-length entries determine the number of physical entries in the

table. The number of logical entries depends on the way in which the

table is built.

A simple but unrealistic example of a table with variable-length

entries is the following table:

1081-1 9:2-15 ZopJ&Pj34

Wo8-d .lALL_

TABLE ALTERNATOR (99) V;

BEGIN

ITEM Al U POS (0, 0);

ITEM A2 U POS (0, 1);

ITEM BI U POS (0, 0);

ITEM B2 U POS (0, 1);

ITEM B3 U POS (0, 2);

END

The table ALTERNATOR has two kinds of logical entries; a two

word entry (consisting of Al and A2) and a three word entry (consisting

of 81, B2, and B3).

If the table is to have alternating two and three word entries,

the first logical entry consists of two words (Al and A2) and begins at

word 0; the second logical entry consists of three words (B1, B2, and

B3) and begins at word 2; the third logical entry consists of two words

and begins at word 5, and so on.

That is, the table looks as follows:

0 Al (0)

1 A2 (0)

2 B1 (2)

3 B2 (2)

4 B3 (2)

5 Al (5)

6 A2 (5)

99 B3 (97)

1081-1 9:2-16

- i

To locate an item, the beginning of the logical entry is found and

the position of the item within that entry is added to that. The next

entry is located by adding the number of items in the current entry to

the beginning of the current entry

The following may be written to increment A2 in each two-word

logical entry and B3 in each three-word logical entry:

TWO'WORD = TRUE;

FOR IX ; 0 WHILE IX < 99;

IF TWO'WORD;

BEGIN

TWOIWORD = FALSE;

A2 OX) = A2 (IX) + 1;

IX = IX + 2;

END

ELSE

BEGIN

TWOWORD = TRUE;

B3 (IX) = B3 (IX) + 1;

IX = IX + 3;

END

This fragment takes advantage of the fact that the logical entries

alternate. It uses a flag, TWO'WORD to determine which type of logical

entry it is processing. This example is unrealistic because if the entries

did alternate as shown, a single five-word entry could be used for each

pair of two- and three-word entries. Normally, a logical entry must

contain something within it to distinguish it.

1081-1 9:2-17 U F Iu.

I ,

A table may be created that contains entries that are two, three,

and four words long, as follows:

Two-word-entry Three-word-entry Four-word-entry

ENTRYISIZE ENTRYISIZE ENTRYISIZE

PART'NUMBER PARTINUMBER PART'NUMBER

ON'HAND ONIHAND

DEFECTIVE

ENTRY'SIZE is used to distinguish the different kinds of logical

entries. A two-word entry contains ENTRY'SIZE with the value 2 and

the number of the part (PART'NUMBER). A three-word entry contains

ENTRY'SIZE with value 3, PART'NUMBER, and the number of units

currently available (ON'HAND). A four-word entry contains ENTRY'SIZE

with the value 4, PART'NUMBER, ONIHAND, and the number of unitsIfound to be defective (DEFECTIVE).

An ordinary table with four items in each entry could be used

for this table, but two words would then be wasted in entries that only

need two words, and one word would be wasted in entries that only

need three words.

A table with variable-length entries may be used, as follows:

TABLE PARTS (100) V;

BEGIN

ITEM ENTRY'SIZE U POS (0, 0);

ITEM PARTNUM C 5 POS (0, 1);

ITEM ON'HAND U POS (0, 2);

ITEM DEFECTIVE U POS (0, 3);

END

1081-1 9:2-18

------ ---

Once a program has filled this table with entries, the total number

of defective items in the file could be calculated. Each entry in table

PARTS that contains a defective item is examined, and the value of

DEFECTIVE is added to a counter, COUNT.

Entries that have a DEFECTIVE item are located by the fact that

the value of ENTRY'SIZE for an entry with a DEFECTIVE item is 4.

The calculation of defective parts is:

COUNT = 0;

FOR I : 0 THEN ENTRY'SIZE (I) + I WHILE < 100;

IF ENTRY'SIZE (I) = 4;

COUNT = COUNT + DEFECTIVE (I);

The for-loop uses ENTRY'SIZE to calculate the position of the next

entry in the table. If that entry has four words, it contains a defective

unit count, and that count is added to the counter COUNT.

LIKE OPTION WITH SPECIFIED TABLES

A specified table may have fixed or variable length entries. All

entries are positioned with a POS clause. When a table-type is declared

using a like-option, the following constraints obtain:

1) Entry-size also includes entries declared in the
like-option.

2) Table-kind must be the same in the table type and
the like-option.

1081-1 9:2-19 r 9.

Example

TYPE TEST TABLE W 2;

BEGIN

ITEM READ B 1 POS (3, 0);

ITEM SET B 1 POS (0, 1);

END

TYPE RETEST TABLE

LIKE TEST W 2;

ITEM GO B 1 POS (10, 1);

1081-1 9:2-20

,!

~ -.-

SECTION 3

THE OVERLAY DECLARATION

50 mc

a- H

THE OVERLAY DECLARATIONS

The overlay-declaration may be used for allocating several data

objects beginning at the same place in storage, for assigning data to a

specified machine address, or for specifying the allocation order of a set

of data objects.

Examples

OVERLAY LENGTH DISTANCE;

OVERLAY POS(622) : VELOCITY;

OVERLAY LENGTH, HEIGHT, WIDTH;

A single overlay-declaration may accomplish one or more of these

purposes.

The general form of the overlay-declaration is:

OVERLAY [POS (address) 1 overlay-expression;

An overlay expression is a sequence of one or more overlay-

strings separated by colons, as follows:

overlay-string

An overlay-string consists of one or more overlay-elements

separated by commas, as follows:

overlay-element

An overlay-element is a name, a spacer, or a parenthesized

overlay-expression.

NOTE: The data objects in an overlay-declaration must all

have the same allocation, either static or automatic. An

overlay-decloration must not be used to specify more than

one physical location for any data object.

1081-1 9:3-1 O '~ .hM3FACIC3

DATA NAMES

The data-names given in an overlay-declaration must be previously

declared. They may be the names of items, or entire tables or blocks.

They may not be the names of items within a table or the names of items

or tables within a block. An overlay-declaration may only name data that

is declared in the same scope as the overlay-declaration and which has no

REF-specification for it.

Given the following declarations:

ITEM COUNT U;

ITEM TIME U;

ITEM MASK B 10;

ITEM RESULT F;

TABLE SPECIFICATIONS (99);

BEGIN

ITEM HEIGHT U;

ITEM LENGTH U;

ITEM WIDTH U;

END

TABLE TEST (1 : 50);

ITEM SUCCESS U;

The following overlay-declarations may be written:

OVERLAY COUNT : TIME : RESULT;

OVERLAY SPECIFICATIONS : TEST. MASK;

The first overlay-declaration contains three overlay-strings. Each

string contains one overlay-element. This declaration specifies that the

items COUNT, TIME, and RESULT are to be allocated beginning at the

same place in storage.

1081-1 9:3-2-*1

The second overlay-declaration contains two overlay-strings.

The first contains one overlay-element, and the second contains two

overlay-elements. This declaration specifies that table SPECIFICATIONS

is to be allocated beginning at the same place in storage as table TEST.

MASK is allocated following TEST, and also shares storage with

SPECIFICATIONS. Table SPECIFICATIONS requires 300 words. The

first fifty words are shared with table TEST, and the fifty-first word

is shared with MASK.

SPACERS

An overlay-element may be a spacer, to indicate how many words

to skip over when assigning storage. The form of the spacer is:

W words-to-skip

Words-to-skip is an integer formula known at compile-time that indicates

how many words are to be skipped when allocating data in the overlay.

Example

TABLE TIMETAB (3);

ITEM TIME U;

ITEM SPEED U;

ITEM DISTANCE U;

OVERLAY TIMETAB:SPEED, W 2, DISTANCE;

TIME(O) SPEED

TIME(l)

TIME(2)

TIME(3) DISTANCE

1081-1 9: 3-3 5 F~g.i71Z7Z7 7~=

PARENTHESIZED OVERLAY-DECLARATIONS

A parenthesized overlay expression is used to indicate multiple

sharing. For instance, in the overlay-declaration below, DISTANCE and
SPEED share storage with the first two entries of TIMETAB, and RATE

shares storage with SPEED and TIME(l).

TABLE TIMETAB(3);

ITEM TIME U;

ITEM DISTANCE U;

ITEM SPEED U;

ITEM RATE U;

OVERLAY TIMETAB :DISTANCE, (SPEED: RATE);

TIME(O) DISTANCE

TIME(I) SPEED RATE

TIME(2)

TIME (3)

ALLOCATING DATA AT ABSOLUTE ADDRESSES

The overlay-declaration may be used to allocate data at a specific
machine address. The form of the overlay-declaration for this case

includes a positioner, as follows:

OVERLAY POS (address) : overlay-string.....

Address is an integer formula known at compile time that gives

the decimal address for a word in memory.

1081-1 9:3-4

f.

The following overlay-declaration may be written to allocate COUNT

at machine word 4800:

OVERLAY POS (4800) : COUNT;

A sequence of words may be allocated, as follows:

OVERLAY POS (4800) : COUNT, TIME, SPECIFICATIONS;

Using the declarations given earlier, COUNT is allocated to word

4800, TIME to 4801, and table SPECIFICATIONS to 4802 through 5101.

Storage sharing may be combined with assigning absolute addresses,

as follows:

OVERLAY POS (4800) : COUNT : TIME : TEST;

The items COUNT, TIME, and TEST are all allocated at machine

address 4800.

An overlay-declaration with an absolute address cannot be

given within a block.

ALLOCATION ORDER

An overlay-declaration may be used to specify the order of

allocation. Unlike the !ORDER directive, which is used to specify

allocation order within a table or block, the overlay-declaration is used

to specify order in a more global way.

The following overlay-declaration may be written to allocate the

items COUNT, TIME, and TEST in that order:

OVERLAY COUNT, TIME, TEST;

This declaration assures the order of allocation for the three items

named'in the declaration.

1081-1 9:3-5 &SCu

__ --

The Overlay Declaration: Examples

1) OVERLAY TIME:SPEED:DISTANCE;

TIME, SPEED, and DISTANCE all start at the same point in storage.

2) OVERLAY TIME, SPEED:DISTANCE, VELOCITY;

TIME and SPEED occupy the same storage as DISTANCE and

velocity.

3) OVERLAY POS(4880):TIME:SPEED;

TIME and SPEED both start at location 4880.

1081-1 9:3-6

- .. , -~4J -~ - - -. AL.--

AD-AL08 528 SOFTECH INC WALTHAM MA F/G 5/9
THE JOVIAL (J73) WORKBOOK. VOLUME 10. DIRECTIVES.(U)
NOV a F3060279-C-O00O

UNCLASSIFIED RAOC-TR-B1-333-VOL-lO NLIIunuInnnnIunu

IIIIIIIIIIIIII
IIIIIIIIIIIIIu
IIIIIIIIIIIIIIfllfl.f
EIIIIEEEEEIIEE

.0 ' 2

OVERLAY DECLARATIONS -- EXERCISES

Given the following declarations:

ITEM TIME U;

ITEM SPEED U;

ITEM DISTANCE U;

TABLE DIMENSIONS(2);

BEGIN

ITEM LENGTH U;

ITEM WIDTH U;

END

1. Write a single overlay-declaration that accomplishes the following

allocations:

TIME at 6002

SPEED at 6004

DISTANCE at 6002

DIMENSIONS at 6003

2. Assuming the contents of DIMENSIONS are not used at the same

time as the other three items, write an overlay-declaration that is

conservative of storage.

1081-1 9:3-7 SOFJT H

J-J

ANSWERS

Given the following declarations:

ITEM TIME U;

ITEM SPEED U;

ITEM DISTANCE U;

TABLE DIMENSIONS(2);

BEGIN

ITEM LENGTH U;

ITEM WIDTH U;

END

1. Write a single overlay-declaration that accomplishes the following

I allocations:

TIME at 6002 6002 TIME DIST
6003 DIM

SPEED at 6004 6004 SPEED +

DISTANCE at 6002 OVERLAY POS(6002) : TIME, W 1, SPEED
: DISTANCE, DIM;

DIMENSIONS at 6003

2. Assuming the contents of DIMENSIONS are not used at the same
time as the other three items, write an overlay-declaration that is

conservative of storage.

OVERLAY DIMENSIONS : TIME, SPEED, DISTANCE;

1081-1 9:3-8

SECTION 4

SUMMARY

IL

0 mc:H

TABLE DECLARATION SYNTAX

The table-declaration syntax, including specified tables, can be

written as follows:

table-declaration

TABLE table-name [table-attributes I

table-body

table-body

(; entry-description
table-type-name [table-preset I
unnamed-entry [table-preset];

unnamed-entry ::=

type-description [(packing-spec)It c table-kind

table-attributes

I allocation-spec I ((dimension-list 1
structure-spec](pCaclekin-pe \packing-spec

strctue-sec Ctable-kind J

f table-preset I

structure-spec

{ PARALLEL I T [bits-per-entry I }

packing-spec

{N M I D

table-kind :

{ W [entry-size] V }

1081-1 9:4-1 j50F j

entry-description

simple-entry-description

compound-entry-description

simple-entry-description ::=

(table-item-declaration

null-declaration

table-iem-declaration

ITEM item-name type-description

f (packing-spec)] [table-preset]
position J

compound-entry-description

BEG IN

simple-entry-description ...

END

1081-1 9:4-2

L .. '1 ° Z - 7- "

P_- A.

THE JOVIAL (J73) WORKBOOK

VOLUME 8

MODULES AND EXTERNALS

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center

Griffiss Air Force Base, NY 13441

Prepared by

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02154

OCopyright, SofTech, Inc., 1981

PREFACE

This workbook is intended for use with Tape 8 of the JOVIAL

(J73) Video Course. Its purpose is to elaborate upon and reinforce con-

cepts and language rules introduced in the videotape.

The workbook discusses the rules for the scope of declarations,

the three different kinds of modules in JOVIAL (J73), (main-program-

module, compool-module and the procedure-module) and how declarations

are communicated from one module to another. The examples presented

here are more detailed than those in the videotape. The final section

contains a summary of the material presented in this segment.

108 1-1

TABLE OF CONTENTS

Section Page

SYNTAX 8:iv

1 INTRODUCTION 8:1-1

2 DATA ALLOCATION 8:2-1

3 DECLARATIONS AND SCOPE 8:3-1

4 PROGRAM MODULES 8:4- 1

5 MAIN PROGRAM MODULES 8:5-1

6 PROCEDURE MODULES AND EXTERNALS 8:6-1

7 COMPOOL MODULES 8:7-1

8 MODULE COMMUNICATION 8:8-1

9 SUMMARY 8:9-1

1081-1 8:iii sOrJ8

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax Meaning Sample Expansions

[some-feature] Brackets indicate an some-feature
optional feature. OR

nothing

{one I other Braces with a vertical one
bar indicate disjunction- OR
a choice between other
alternatives.

Cthis-one Braces with each feature this-one
that-one1 on separate lines indicate OR

disjunction - a choice that-one
between alternatives.

letter ... The sequence I...' letter
indicates one or more letter letter

repetitions of a feature. letter letter letter

(letter).... The sequence "..., (letter)
following a comma (or a (letter) (letter)
colon) indicates one or (letter) (letter) (letter)
more repetitions of the
feature separated by
commas (or colons).

this-onei, Syntax symbols may be this-one + (another)
\that-oneI combined, that-one + (another)

+ another + (another)

1081-1 8:iv s r i

SECTION 1

INTRODUCTION

I"

5 0 eu-H

9'

INTRODUCTION

A complete JOVIAL (J73) program may be written as one module,

one compilation unit. It will contain all the declarations, executable state-

ments and subroutines necessary for the execution of the program. See

Figure 1-1.

A program may be a collection of more than one module. Each

module is created and maintained separately and linked together for execu-

tion as a unit. See Figure 1-2.

JOVIAL has three kinds of modules -- main-program modules,

procedure modules, and compool modules. The declarations of data objects

and subroutines may be placed in a compool-module. This module is used

to communicate between the procedure-module and the main-program-

module. Subroutine definitions may be placed in a procedure-module.

The main program has control over the complete program.

1081-1 8:1-1 SoIrecH

START
PROGRAM SEARCH;

BEGIN
TYPE KEY STATUS (V(RED), V(GREEN), V(YELLOW));
TYPE DBASE TABLE (1000);

BEGIN
ITEM CODE KEY;
ITEM VALUE U;
END

ITEM CURVAL U;
TABLE DATA DBASE;
GETVALUE (DATA);
CURVAL = RETRIEVE (V(RED));
PROC RETRIEVE (ARG1) U;

BEGIN
ITEM ARG1 KEY;
FOR 1:0 BY 1 WHILE I <= 1000;

IF CODE (I) = ARG1;
RETRIEVE = VALUE (I);

ERROR (20);

END END

DEF PROC ERROR (ERRNO);
BEGIN
ITEM ...

TERM

Figure 1-1. A Complete 1 Module Program

1081-1 8:1-2

• ,. r: .'. .., = , ,, ,iml,,i =....,--,. -- -- ---..-- _....-...........,........-.... -..... ..

START !COMPOOL ('DATA')
PROGRAM MAIN;

BEGIN
FOR 1:0 BY 1 WHILE I < UBOUND(PRIVILEGE,0);

IF FIND(I,PRIVILEGE) = FIND(I**2,ASSIGNMENT);
STOP 21;

STOP 22;
END

TERM
START
!COMPOOL 'DATA';
DEF PROC FIND(CODE,TAB);

BEGIN
ITEM CODE U;
TABLE TAB(*);

BEGIN
ITEM TABCODE U;
ITEM TABVALUE F;
END

FIND = -99999.;
FOR 1:0 BY 1 WHILE I<UBOUND(TAB,0);

IF CODE = TABCODE(I);
BEGIN
FIND = TABVALUE(I);
EXIT;
END

END
TERM
START COMPOOL DATA;

DEF TABLE PRIVILEGE (100);
BEGIN ITEM NUMBER U;
ITEM NUMBER U;
ITEM RATING F;
END

DEF TABLE ASSIGNMENT(999);
BEGIN
ITEM KEY U;
ITEM COORDINATE F;
END

DEF ITEM LIMIT U;
REF PROC FIND(CODE,TAB) F;

BEGIN
ITEM CODE U;
TABLE TAB(*);

BEGIN
ITEM TABCODE U;
ITEM TABVALUE F;
END

END
TERM

Figure 1-2. Multiple Module Program

1081-1 8:1-3 soFTr&P

I

This main program module (see Figure 1-2) uses the tables declared

in the compool module and the function FIND defined in the procedure

module and referenced in the compool module. The program consists of

the main program module, the compool module DATA and the procedure

module.

1

1081-1 8:1-4

SECTION 2

DATA ALLOCATION

r

DATA ALLOCATION

Two kinds of storage are defined for data objects:

Static -- Storage is allocated before program
execution and deallocated after pro-
gram execution. Data objects not
declared within subroutines are given
static allocation by default. Data
objects may be explicitly declared
STATIC.

Automatic -- Storage is allocated when the sub-
routine in which the data object is
declared is entered and deallocated
upon exit from that subroutine. Data
objects declared within subroutines
are given automatec allocation by
default. Data in subroutines may
be allocated statically by use of the
STATIC attribute. A data object
cannot be explicitly declared
AUTOMATIC.

Data may be explicitly declared to be static in item, table, and

block-declarations. The forms are:

ITEM name I STATIC] (type-descri on) item-preset ;

TABLE name [STATIC] I (dimension-list)] [table-preset I

entry-description

BLOCK name [STATIC]

block-body

An item, table, or block declared to be CONSTANT is given static

allocation. The STATIC specifier may not be given in a CONSTANT

declaration.

1081-1 8:2-1 SC

_________.._______ ., '-

VI

A component of a block or table has the same allocation as the

block or table of which it is a part. It may not have the STATIC specifier.

A component of a block may be a constant only if the block has static

allocation.

Only static data may be preset.

Each invocation of a subroutine receives its own copy of automatic

variables.

All invocations of a subroutine share variables declared to have

STATIC allocation or have STATIC allocation by default.

Example

PROC RADICAL (AA, BB, CC) F;

BEGIN

ITEM AA F;

ITEM BB F;

ITEM CC F;

ITEM COUNT STATIC U = 0;

RADICAL = (BB ** 2 - 4. * AA * CC);

COUNT = COUNT + 1;

END

1081-1 8: 2-2

SECTION 3

DECLARATIONS AND SCOPE

0 ucH

DECLARATIONS AND SCOPE

DECLARATIONS

The main program module contains declarations. The other kinds

of modules, the procedure module and the compool module, also contain

declarations. In fact, declarations are an important part of a JOVIAL

(J73) program.

A declaration is a "non-executable" construct. That is, it does

not represent an action taken when the program is executed. Instead of

causing action, each declaration provides information about a name that

is used in the program. That information is used by the compiler each

time it encounters a use of the declared name.

A declaration does not, in most cases, extend over the entire

program. Instead, it applies to a particular part of the program, called

the "scope" of the declaration. In fact, the same name can be declared

more than once in a program, and each declaration will apply only to its

scope. Thus, the programmer does not need to worry about conflicts of

names in unrelated parts of a program.

SCOPE

The scope of a declaration is the area in which that declaration

applies. A given scope can contain one or more smaller scopes. The

number of levels is not limited by the language. In JOVIAL (J73), a

scope extends over an entire subroutine. That is, a declaration applies

in the entire subroutine in which it is declared, including nested

subroutines. Scopes are established during the compilation of a module.

1081-1 8:3-1

. ..= 7l I _ I I _ I I _ lb I

In a subroutine, scope could be diagrammed as follows:

PROC MAXVAL M'IN : M'OUT);

BEGIN
ITEM M'IN U;
ITEM MIOUT U;

executable statements

PROC FIGURE F'IN : POUT);
BEGIN
ITEM PIN F;
ITEM F'OUT S;

executable statements

END

END

Data objects declared in a scope are said to be global to any inner

scope. That is, those data objects may be referenced within an inner

scope. Using the above example the types and values of the items M'IN

and M'OUT are known within the scope of procedure MAXVAL, and thus

known within the scope of procedure FIGURE. M'IN and MIOUT are global

to procedure FIGURE. At any point in procedure FIGURE, M'IN and

M'OUT may be used in a formula or receive an assignment. The types

and values of the items FIN and F'OUT are only known within the scope

of procedure FIGURE. MAXVAL may not refer to F'IN or F'OUT. No name

is known outside of its scope.

NOTE: When a data name is declared in an outer scope and

also declared in an inner scope, a reference to that name in

an inner scope refers to the inner declaration of that name.

1081-1 8:3-2

Example

In Figure 3-1, item SIZE and the procedure names CALCULATE

and COMPUTE are in the scope of the procedure module. The names OPi

and OP2 are in the scope of both CALCULATE and COMPUTE. The name

RESULT is in the scope of CALCULATE, COMPUTE and SUBTOTAL. A

reference to RESULT within SUBTOTAL refers to an output parameter of

SUBTOTAL that is an unsigned integer. A reference to RESULT within

COMPUTE refers to an output parameter of COMPUTE that is a floating point

object.

SCOPE -- LABELS

The scope rules of labels are different than the scope rules for

other data objects.

The name of a labet is not known in a nested subroutine.

PROC COMPUTE;

BEGIN
declarations

LABI: statement;

GOTO LABI; (correct)

PROC FIGURE;

BEGIN
declarations

GOTO LABI; (incorrect)

iND

END

1081-1 8:3-3 &ICH

START PROGRAM TEST;
module-scope

module-body-scope
BEGIN

ITEM LENGTH U;

PROC CALCULATE (OP1, OP2:RESULT);
subr-scope

BEGIN
ITEM OPI F;
ITEM OP2 F;
ITEM RESULT F;
ITEM SIZE U;

LENGTH = 21;

EN41D

PROC COMPUTE (OP1,OP2: RESULT);
subr-scope

BEGIN
ITEM OP1 F;
ITEM OP2 F;

ITEM RESULT F;
ITEM SIZE U;

PROC SUBTOTAL(TOTAL: RESULT);
subr-scope

BEGIN
ITEM TOTAL U;
ITEM RESULT U;

RESULT = TOTAL**2;

END

END

END

DEF PROC REPORT(IN,OUT);

TERM

Figure 3-1. Scoping Levels of Main-Program Module

1081-1 8:3-4

SECTION 4

PROGRAM MODULES

SOFboc:F

PROGRAM MODULES

A complete program is made up of one or more modules which are

compiled separately and then linked together for execution.

All modules begin with the reserved word START and end with
TERM. These words delimit the compilation unit.

There are three kinds of modules: the main-program-module, the
compool-module, and the procedure-module. A program must have one and
only one main-program-module and may have zero or more compool- or
procedure-modules. Each module is created and maintained as a separate

text file.

START START START
PROGRAM MAIN; "PROCEDURE-MODULE" COMPOOL DECLS

DEF PROC TOTAL U;

TERM TERM TERM

j EXECUTE

Figure 4-1. A Complete Program

1081-1 8:4-1 F rF'L .i

Procedure-modules and compool-modules help in the development of

large programs in several ways:

1. When one module is changed and the others are not, only
the changed module and the modules it affects need to be
recompiled.

2. If the size of the main-program-module exceeds the capacity
of a computer, a portion of it can be removed and embodied
in a procedure-module. After that, each of the resulting
modules is smaller and more likely to fit the machine.

3. When a large project is organized, each main-program-module
can be assigned to a specific programmer; program organ-
ization can parallel staff organization.

4. Certain modules can be shared among projects. Thus general
libraries can be developed.

1 -:

1081-1 8:4-2

SECTION 5

THE MAIN PROGRAM MODULE

I&

THE MAIN PROGRAM MODULE

The main-program-module controls the actions to be performed in

the complete program. Execution of the program starts at the first state-

ment in the main-program-module and continues until either a stop-

statement or the last statement in the main-program-module is reached.

Execution may include calls to subroutines that may have been compiled

separately in procedure-modules (see Section 6) and imported through

a compool-module (see Section 7).

A main-program-module may not have parameters, nor may it be

called by another subroutine.

A main-program-module contains a program-body and an optional

sequence of non-nested subroutines. The form of the main-program-

module is:

START PROGRAM name;

BEGIN

declaration]

executable statements

subroutine-definition]

END

f subroutine-definition j

TERM

The declarations and subroutine-definitions are optional, but the program-

body must contain at least one executable statement.

1081-1 8:5-1 OC H

I

A non-nested subroutine is a subroutine definition that can be made

external by the addition of the DEF reserved word, as follows:

[DEF I subroutine-definition

A non-nested subroutine can contain nested subroutines.

Consider the following main-program-module:

START PROGRAM SEARCH;

BEGIN

TYPE KEY STATUS (V(RED), V(GREEN), V(YELLOW));

TYPE DBASE

TABLE (1000);

BEGIN

ITEM CODE KEY;

ITEM VALUE U;

END

TABLE DATA DBAS.;

ITEM CURVAL U;

GETVALUE(DATA);

CURVAL=RETRIEVE(V(RED));

PROC RETRIEVE(ARG1) U;

BEGIN

ITEM ARGI KEY;

FOR 1:0 BY 1 WHILE I<=1000;

IF CODE() = ARGI;

RETRIEVE = VALUE(1);

ERROR(20);

END

END

1081-1 8:5-2

Aim

DEF PROC GETVALUE(ARGTAB);

BEGIN

TABLE ARGTAB DBASE;

END

DEF PROC ERROR(ERRNO);

BEGIN

ITEM ERRNO U;

END

TERM

This main-program-module consists of a program-body and two non-nested

subroutines. The program-body contains two type-declarations , a table-

declaration, an item-declaration, two statements, and a nested subroutine-

definition.

This main-program-module is independent and could be compiled

and executed. Data declared in the main-program-module is given STATIC

allocation by default.

1 0 8 1 - 1 8 : 5 - 3 e 3

-- - _ _ _

SECTION 6

PROCEDURE MODULES

AND EXTERNALS

pec q

LIMc,.

PROCEDURE-MODULES AND EXTERNALS

PROCEDURE MODULES

A procedure-module provides a way in which the subroutines of a

program can be compiled separately. A procedure-module contains declara-

tions and subroutine-definitions, as follows:

START

[declaration ... I

I I DEF I subroutine-definition ... 1

TERM

As an example of a procedure-module, consider the following:

START !COMPOOL ('TYPEDEFS');

DEF PROC GETVALUE(ARGTAB);

BEGIN

TABLE ARGTAB DBASE;

END

DEF PROC ERROR(ERRNO);

BEGIN

ITEM ERRNO U;

END

TERM

The procedure module contains two external subroutine definitions. The

type-name DBASE is provided by the declaration of DBASE in the compool

TYPEDEFS.

1081-1 8:6-1

-r 4.-

Since the main-program-module is compiled at one time and the

procedure-module is compiled at another, the subroutine-names must be

made known external to the procedure-module and the subroutine-names

must be properly communicated to the modules that call them.

EXTERNAL DEFINITIONS

The subroutine-definitions must be brought into the scope of the

calling module. This is done by means of external definitions.

There are two kinds of external-declarations:

DEF-specification

to make a name available outside the scope in which
it is declared (exporting a name)

REF-specification

to bring into a scope a name DEF'ed in another
module (importing a name)

NOTES: An external-declaration can be used to make a

data name declared in one module accessible to other

modules.

All external data names must be distinct throughout the

complete program.

External-declarations of formal parameters is not

permitted.

DEF-SPECIF ICATION

A DEF-specification specifies that a name is available outside of

the scope of which it is declared. The form is:

DEF declaration

DEF BEGIN
declaration .
END

1081-1 8:6-2

DEF PROC name [use-attribute]

[(formal-list)] [item-type-description];

subroutine-body

The following is an example of a DEF-specification:

DEF BEGIN

ITEM RATE U 10;

ITEM TIME U 15;

TABLE STOCKS (100);

BEGIN

ITEM NAME C 6;

ITEM QUOTE C 3;

END

END

This external-declaration declares the items RATE and TIME and the

table STOCKS. All of those data objects and their attributes are "exported"

outside the module containing the DEF-specification.

A DEF-specification can be used to declare an item, table, block,

or statement name. A DEF-specification can be used to define a subroutine

in a main program or procedure module, but not in a compool module.

A DEF-specification for a statement name makes the address of

the statement available for linkage purposes. The statement name, however,

cannot be used as the target of a GOTO statement that is in another module,

or in any other way to cause control to transfer outside the given scope.

Data or subroutines declared by a DEF-specification in a module

are physically allocated in that module.

A DEF-specification can only be used with data objects that are

allocated statically. Data declared external in a subroutine, therefore,

must have a STATIC allocation-spec. Data objects may be preset.

1081-1 8:6-3

For example, to declare the external item FLAGS within the pro-

cedure MONITOR, one can write:

PROC MONITOR(STATE);

BEGIN

DEF ITEM FLAGS STATIC B 5;

END

The item FLAGS is declared as an external name. The declaration includes

the STATIC allocation-spec because the declaration is given within the

subroutine MONITOR.

If a subroutine-definition in a procedure-module is preceded by

DEF, that subroutine may be invoked from within the main-program-module

or from within another procedure-module, provided that the referencingI module contain an appropriate REF-specification for the subroutine for

accesses a compool containing such a specification.

REF-SPEC I FICAT ION

The REF-specification imports a name and its attributes which was

declared by a DEF-specification in another module.

The forms are:

REF declaration

REF BEGIN

declaration ...

END

REF PROC name [use-attribute]

[(formal-list) I [item-type-description]

pa rameter-decla rations

1081-1 8:6-4

= - . . . J "- - " - - l ,l . .. r 1 li "d ,

A name declared in a REF-specification must agree in name, type

and all other attributes with the name declared in the corresponding DEF-

specification.

A REF specification can be used to import information about items,

tables, blocks or subroutines.

A constant item or table cannot appear in a REF-specification.

A REF-specification may be given for a block containing a constant

declaration. The following example is the only case in which a preset may

be given in a REF-specification.

DEF BLOCK PSEUDOBLOCK;

BEGIN

CONSTANT ITEM P1 F = 3.14159;

END

Example - DEF-REF Communication

START

PROGRAM XX;

BEGIN

REF ITEM YY U;

REF PROC ZZ;

BEGIN END

REF PROC WW (V1 V2);

BEGIN

ITEM V1 F;

ITEM V2 F;

END

1081-1 8:6-5 5 b E

WIN OUT);

ZZ;

YY = YY + 1;

END

TERM

START

DEF ITEM YY U;

~ I. DEF PROC ZZ;
BEG IN

PROC AA;

END

DEF PROC WW (VI V2);

BEGIN

ITEM Vl F;

ITEM V2 F;

END

TERM

1081-1 8:6-6

SECTION 7

COMPOOL-MODU LES

LO~c

COMPOOL-MODU LES

The third kind of module is called a compool, (from the original

"common declaration pool"). A compool-module may be used to communi-

cate between separately compiled-modules. A compool contains declara-

tions of global data (DEFs), references to procedures declared in another

module (REFs), constant data objects, and type-declarations. The form

of a compool-module is:

START

COMPOOL compool-name;

compool-declaration ...

TERM

The following kinds of declarations are allowed in a compool-module:

, • constant-declaration

* type-declaration

* define-declaration

* overlay-declaration

* DEF-specification for a data or statement name declaration

• REF-specification for a data or subroutine declaration

As an example of a compool-declaration, consider the following:

START COMPOOL TYPEDEFS;

TYPE KEY STATUS (V(RED), V(GREEN), V(YELLOW));

TYPE DBASE

TABLE (1000);

BEGIN

ITEM CODE KEY;

1081-1 8:7-1 IFT&Pr .H

lO81-

ITEM VALUE U;

END

TERM

The compool TYPEDEFS contains two type-declarations, one for the item
type KEY and one for the table type DBASE.

COMPOOL DIRECTIVES

The information in a compool-module is made available to the module

being compiled by a compool-directive. Compool-directives are given
immediately following the START in the module being compiled, or following

another ! COMPOOL-directive.

The forms are:

COMPOOL (compool-file);

COMPOOL compool-file name.

COMPOOL compool-file (name), ... ;

Compool-file name is a character-literal.

A compool-file enclosed in parentheses implies all names in the
compool are to be made available, except those names used in the compool

that were obtained from other compools.

If the compool-directive contains a list of names, only those names
will be made available.

If the compool-directive contains a name of a table or block enclosed

in parentheses, all of its component names will be made available.

The names given in a compool-directive must be declared in the

designated compool. A name may not be a component of a type-name or

the name of a formal parameter.

If the name given in a compool-directive is the name of an item,

table, or block declared using a type-name, then the declaration of the

type-name is also made available, provided it is declared within the compool

and not brought in by a compool-directive.

1081-1 8:7-2

For a pointer item, the definition of the type-name that is the

pointed-to type is also made available, provided it is declared within the

compool and not brought in by a compool-directive.

If the given name is the name of an item within a table, then the

table name is also made available.

If the given name is a table name, the definitions of any status-

lists or status-type-names associated with the table's dimensions are also

made available, provided they are declared in the compool.

If the given name is a table type-name or block type-name, the

definitions of the components are made available.

If the given name is a status item name, its associated status-list

and status type-name (if any) are also made available, provided they are

declared in the compool.

If the given name is the name of a subroutine, any type-names

associated with the subroutine's formal parameters or return value are

also made available, provided they are declared in the compool.

Examples

Consider the following compool:

START COMPOOL BSQDATA;

DEF ITEM HEIGHT U;

DEF ITEM WIDTH U;

DEF ITEM LENGTH U;

DEF TABLE GRID (20,20);

BEGIN

ITEM XCOORD U;

ITEM YCOORD U;

END

TERM

1081-1 8:7-3 SOFTeC,

The following list gives different forms of the compool-directive

and indicates the declarations that are made available for each form.

Directive Available Declarations

!COMPOOL 'BSQDATA' LENGTH; LENGTH

!COMPOOL 'BSQDATA' LENGTH, LENGTH, WIDTH
WIDTH;

!COMPOOL 'BSQDATA' GRID GRID

!COMPOOL 'BSQDATA' (GRID); GRID, XCOORD, YCOORD

!COMPOOL ('BSQDATA'); LENGTH, HEIGHT, WIDTH, GRID,
XCOORD, YCOORD

NOTE: The compool 'BSQDA TA' must be compiled before

the module which would access it through a ! COMPOOL

directive is compiled.

Compool-modules and declarations must not be used in a circular

way. The following is an illegal usage of compool directives:

START ! COMPOOL('TYPEDESCR');

COMPOOL DECLS;

DEF TABLE ID(1 : 5, 2 : 6);

BEGIN

ITEM NAME LONGSTR;

ITEM BRIBE VALUE;

ITEM GRADE LETTER

END

TYPE MAXVAL U 15;

TERM

1081-1 8:7-4

7I

START COMPOOL ('DECLS');

COMPOOL TYPEDESCR;

TYPE LETTER STATUS MVAL, V(B), V(C), V(D));

TYPE LQNGSTR C 20;

TYPE VALUE U 18;

DEF ITEM NUMBER MAXVAL;

TERM

1081-1 8:7-5/8:7-6 O J ag

COMPOOL-DIRECTIVE -- EXERCISE

Given the following compool-module:

START

COMPOOL DATA;

DEF ITEM TEST F;

DEF TABLE SQUARE (I 10);

BEGIN

ITEM LENGTH U;

ITEM WIDTH U;

END

DEF ITEM COUNT S;

TERM

and the following compool-directives, indicate the information available

to the module containing the compool directive:

Directive Information

!COMPOOL 'DATA' TEST;

!COMPOOL 'DATA' TEST, COUNT;

!COMPOOL 'DATA' SQUARE;

!COMPOOL 'DATA' (SQUARE),
COUNT;

COMPOOL ('DATA');

1081-1 8:7-7 UOFRGICH

ANSWERS

Directive Information

!COMPOOL 'DATA' TEST; TEST

!COMPOOL 'DATA' TEST, COUNT; TEST, COUNT

!COMPOOL 'DATA' SQUARE; SQUARE (1 10)

'COMPOOL 'DATA' (SQUARE), SQUARE (1 : 10), LENGTH, WIDTH
COUNT; COUNT

!COMPOOL ('DATA'); TEST, SQUARE (1 10), LENGTH,
WIDTH, COUNT

I

1081-1 8:7-8

- -T

SECTION 8

.MODULE COMMUNICATION

I r. lt~4

MODULE COMMUNICATION

Modules may communicate by using compool-directives as shown

in the preceding sections. If a declaration is to be used in more than one

module, it is passed in a compool. It may be referenced in each module

that needs it by using a compool-directive.

As an example of communication by using a compool-directive

consider:

START COMPOOL TYPEDEFS;

TYPE DBASE TABLE (1000);

BEGIN

ITEM CODE KEY STATUS (V(RED), V(GREEN));

ITEM VALUE U;

END

TERM

START !COMPOOL ('TYPEDEFS');

COMPOOL DATABASE;

DEF TABLE DATA DBASE;

TERM

The compool-module TYPEDEFS contains the type-declaration for the table

type DBASE. The compool-module DATABASE contains the compool-

directive, which makes the declarations of the compool TYPEDEFS available.

Thus, the type-name DBASE does not have to be declared in the module.

If communication between modules is accomplished through compool-

directives, the compiler provides the declaration of the shared object.

If the module using that object does not use it in a manner that is consistent

with its declaration, the error is detected and reported at compile-time.

1081-1 8:8-1 slfC

- ~-r'--

A REF-specification can be used in one module to directly communi-

cate with another module, but in this case, no checking can be performed.

The compiler assumes that the type class and attributes given in the REF-

specification are accurate. At link time, the references to the name are

bound together, but no check of type or attributes can be made because

that information is no longer available.

Thus, if the REF-specification declares an object of one type and

the DEF-specification declares an object of another type, the program that

is formed by linking the separately compiled modules is invalid and the
results of its execution are unpredictable.

As an example of direct communication, consider a procedure

module which.contains some external subroutine definitions as follows:

START ! COMPOOL (TYPEDEFS);

DEF PROC GETVALUE(ARGTAB);

BEGIN

TABLE ARGTAB DBASE;

END

DEF PROC ERROR(ERRNO);

BEGIN

ITEM ERRNO U;

END

TERM

Now, suppose that the module DATABASE does not contain a REF-

specification for the subroutine ERROR, but instead the main-program

module includes a REF-specification for ERROR, as follows:

1081-1 8:8-2

.A*

START ! COMPOOL (DATABASE);

PROGRAM SEARCH;

BEGIN

REF PROC ERROR(ERRNO);

ITEM ERRNO U;

GETVALUE(DATA);

CURVAL = RETRIEVE(V(RED));

PROC RETRIEVE(ARGI) U;

BEGIN

ITEM ARGI KEY;

FOR 1:0 BY 1 WHILE I <=1000;

IF CODE(I) = ARTI;

RETRIEVE = VALUE(1);

ERROR(20);

END

END

TERM

In this case, the REF-specification for ERROR agrees with the DEF-

specification, and the resulting program operates correctly. However,

suppose the REF-specification indicated that the subroutine ERROR has

two arguments. The compiler cannot detect any error, the linker makes

the connection and the resulting program is invalid but no indication of

its invalidity can be made.

Once all modules have been compiled, they may be linked together

and run as a complete program. If a change is made in the main-program-

module, that is the only module which would need to be recompiled since

no other module accesses it. If a change is made to a compool-module,

it and all modules which access it must be recompiled.

1081-1 8:8-3 UO T,

SECTION 9

SUMMARY

I,

so~rmo.u~

SUMMARY

DATA ALLOCATION

Allocation of storage for a data object can be STATIC or automatic.

STATIC allocation means that the data object is to exist throughout the

entire execution of the program. Automatic allocation is applicable only

to data declared within subroutines and means that the data object need

only exist while the subroutine is executing (i.e., values are not neces-

sarily preserved between calls). Automatic is the default allocation for

data declared in subroutines and cannot be explicitly specified. STATIC

is the default for data not declared in subroutines and can be explicitly

specified both inside and outside of subroutines.

SCOPE

The scope of a declaration is the text over which the declaration

may be legally accessed.

PROGRAM-MODU LES

A complete program is made up of one or more modules. Each

module is compiled separately and later linked together. A module is

delimited by START at the beginning and TERM at the end.

There are three kinds of modules. They are:

0 main-program-module

9 compool-module

0 procedure-module

A program must have one and only one main-program-module and may

have zero or more compool- or procedure-modules.

1081-1 8:9-1

.j•. .

MAIN PROGRAM MODULE

The main-program-module controls the actions to be performed.

Only one may exist in a complete program.

A form of a main-program-module is:

START

PROGRAM program-name;

program-body

[subroutine-definition ...

TERM

PROCEDURE MODULES

A procedure-module is to define global subroutines. Those sub-

routines may then be accessed in other modules. A form of a procedure-

module is:

START

[declaration] ...

[subroutine-definition] ...

TERM

EXTERNAL DECLARATION

An external-declaration can be used to make data name declared

in one module accessible to other modules. There are two kinds of external-

declarations:

DEF - specification

REF - specification

1081-1 8:9-2

-= 4

DEF-SPECIFICAT ION

A DEF-specification specifies that a name is available outside of the

scope which is declared. The form is:

DEF declaration

DEF BEGIN

declaration ...

END

DEF PROC name [use-attribute I

(formal-list) I [item-type-description]

subroutine body

REF-SPECIFICATION

A REF-specification references an external name. The forms are:

REF declaration

REF BEGIN

declaration ...

END

REF PROC name [use-attribute]

[(formal-list)] [item-type-description ;

parameter-declarations

COMPOOL-MODULES

A compool-module provides for the communication of names between
separately compiled modules. A compool-module can contain only declara-

tions. The form is:

START COMPOOL compool-name

declaration ...

TERM

1081-1 8:9-3 5h

-, - ~ ~ ~ e s ~ a . ~ a. a.~ 7 W m ~ n U I

COMPOOL-DIRECT IVES

A compool-directive is used to identify the compool and the set

of names from that compool that are to be used in the compool scope for

the module being compiled. The forms are:

COMPOOL (compool-file);

COMPOOL compool-file name, ... ;

COMPOOL compool-file (name), ... ;

MODULE-COMMUNICATION

Compool-modules are compiled prior to any module which would

access it. Procedure-modules and the main-program module are then

compiled. The main-program-module calls in the compool to access global

data items and the externally known subroutine.

The modules communicate by using a compool-directive or a

REF-specification in one module to directly communicate with another

module.

1081-1 8:9-4

~'

THE JOVIAL (J73) WORKBOOK

VOLUME 9

ADVANCED TOPICS

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center

ISIS
Griffiss Air Force Base, NY 13441

Prepared by

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02154

@Copyright, SofTech, Inc., 1981

PREFACE

This workbook is intended for use with Tape 9 of the JOVIAL (J73)

Video Course. Its purpose is to elaborate upon and reinforce concepts

and language rules introduced in the videotape.

The layout of ordinary and specified tables is discussed in

Sections 1 and 2. The Overlay declaration is addressed in Section 3.

Section 4 is a syntactic summary of the material presented in Sections 1

and 2.

1 081-1 -. . .. u -

TABLE OF CONTENTS

Section Page

SYNTAX 9: iv

1 TABLE STRUCTURE AND LAYOUT: ORDINARY
TABLES 9:1-1

2 TABLE STRUCTURE AND LAYOUT: SPECIFIED
TABLES 9:2-1

3 THE OVERLAY DECLARATION 9:3-1

4 SUMMARY 9:4-1

1081-1 9:iii UOFJ 0g..

SYNTAX

The syntax conventions used in the JOVIAL (J73) Video Course

and workbook are as follows:

Syntax Meaning Sample Expansions

(some-feature] Brackets indicate an some-feature
optional feature. OR

nothing

(one I other} Braces with a vertical one
bar indicate disjunction- OR
a choice between other
alternatives.

his-one Braces with each feature this-one
hat-one1 on separate lines indicate OR

disjunction - a choice that-one
between alternatives.

letter ... The sequence I.. .' letter
indicates one or more letter letter
repetitions of a feature. letter letter letter

(letter),... The sequence .. (letter)
following a comma (or a (letter) (letter)
colon) indicates one or (letter) (letter) (letter)
more repetitions of the
feature separated by
commas (or colons).

this-ones1 Syntax symbols may be this-one + (another)
that-one combined, that-one + (another)

+ another + (another)

1081-1 9:iv 5m

L&.. --I--

SECTION 1

TABLE STRUCTURE AND LAYOUT:

ORDINARY TABLES

5!,c

TABLE STRUCTURE AND LAYOUT: ORDINARY TABLES

Workbook 9 considers some advanced features of JOVIAL (J73).

Successful programs can be written without using any of these features,

but they become increasingly necessary when memory space is limited,

or when communicating with hardware devices that produce and expect

data in certain formats. This section examines the structure and layout

of JOVIAL (J73) ordinary tables. (Ordinary tables were discussed in

Workbook 4). The other type - specified tables - will be discussed in

the next section.

An ordinary table is one for which the compiler determines the

storage layout from packing and structure information specified in the

table - declaration. The packing-spec describes the way in which items

within an entry are packed. The structure-spec describes the structure

of the table in memory (serial or parallel) or the number of entries to be

allocated per word (tight structure).

PACKING

Table packing refers to the allocation of items within an entry to

words of storage. If a table entry contains more than one item, the way

in which the items of the entry are packed can be specified by giving a

packing-spec.

The packing-spec may be given as part of the table-declaration,

as follows:

TABLE table-name [(dimension-list)] [packing-spec]

entry-description

The square brackets indicate that the dimension-list and -the

packing-spec are optional.

1081-1 9:1-1

A packing-spec may be given for any item in the table, as follows:

ITEM item-name item-description [packing-spec 1;

If the packing-spec is given in the table-attributes, it applies to

the entire table. All items are packed according to that packing-spec

except those items that have a packing-spec in their declaration.

NOTE: Some implementations will reorder items within on

entry for purposes of more efficient packing unless the

!ORDER directive is in effect.

The packing-spec is one of the following:

N No packing. Each item is allocated in a new word. (This
is the default.)

M Medium packing. The amount of packing depends on the
implementation.

D Dense packing. The compiler packs as many items of an
entry as possible within a word, making use of all
available bits within the word. Items that occupy one
word or more ,re always allocated at a word boundary and
bytes of a character item are always aligned on a byte
boundary.

If a packing-spec is not given, the compiler assumes N (no

packing) for all tables except for those with tight structure, which is

described later in this section.

Examples

1) Given the following table-declaration:

TABLE TRACK (1 : 100);

BEGIN

ITEM D!ST U 5;

ITEM SB B 3;

ITEM ANGLE S 10;

END

1081-1 9:1-2

The compiler assumes TRACK is a serial table with no packing and

allocates each item to a separate word. If BITSINWORD is 16,

TRACK may be diagrammed as follows:

TRACK

DIST(1)

SB(1) TRACK(l)

ANGLE (1)

DIST(100)

SB (100) TRACK(100)

ANGLE(100

Table TRACK requires 300 words of storage.

2) Given a table-declaration for the same table that includes a packing-

spec of D:

TABLE TRACK (1 : 100) D;

BEGIN

ITEM DIST U 5;

ITEM SB B 3;

ITEM ANGLE S 10;

END

The compiler packs as many items of a single entry as possible

within a word. The total number of bits required for each entry

is 19. If BITSINWORD is 16, the compiler packs DIST and SB into

one word, using two words for each entry. TRACK may be

diagrammed as follows:

1081-1 9:1-3 F m

TRACK

DIST(1) SB (1) TRACK(1)
ANGLE(l} I

I DIST(100) SB 0 0I n~rh~n~1 1 SB (100)I 'J~~IU
ANGLE(100) 1

Table TRACK, requires 200 words of storage.

If BITSINWORD is 32, the compiler is able to pack all three items

of an entry into a single word. That layout may be diagrammed as

follows:

TRACK

DIST(1) SB(1) : ANGLE(1) TRACK(1)

DIST(100j S13(100) ANGLE(100) TRACK(100)

Table TRACK requires 100 words of storage.

3) Given a table-declaration for the same table that includes a packing-

spec of D in the table-attributes and a packing-spec of N -in the

item-declaration of SB:

TABLE TRACK (1 : 100) D;

BEGIN

ITEM DIST U 5;

ITEM SB B 3 N;

ITEM ANGLE S 10;

END

1081-1 9:1-4

The packing-spec for the table indicates dense packing, but the

packing-spec for item SB indicates no packing. All other items in

the table may be packed densely, but item SB must occupy a word

by itself.

If the given implementation reorders items within an entry and an

!ORDER directive is not in effect, DIST and ANGLE may be packed

into one word and SB allocated in another word. If BITSINWORD

is 16, TRACK may be diagrammed as follows:

TRACK

DIST(l) ITRACK (1)

DIST(100) : ANGLE(100) 1 TRACK(100)

, I

SB (100) I

If the implementation does not perform reordering or an !ORDER

directive is in effect, the items are each allocated a new word and

the table requires 300 words of storage.

4) Given a table-declaration without a packing-spec, N (no packing)

is assumed. Several items within the table may have a packing-

spec of D, as follows:

TABLE SUPERTRACK (100);

BEGIN

ITEM DIST U 5;

ITEM SB B 3 D;

ITEM ANGLE S 10;

ITEM MASKI B 4 D;

ITEM MASK2 B 2 D;

END

1081-1 9:1-5 5OF I ..

... -' .e s aj.J ""- . '" " -

This declaration directs the compiler to allocate a separate word

for DIST and a separate word for ANGLE and to pack MASKi and

MASK2 within a single word, with the option of either packing SB

with MASKI and MASK2 or allocating a separate word for SB. If

the implementation of the compiler performs reordering and an

!ORDER directive is not in effect, SB, MASKI, and MASK2 may be

packed in the same word. If the compiler does not perform

reordering or an !ORDER directive is in effect, SB will be

allocated a separate word.

1081-1 9:1-6

. . . . " i ''_/

PACKING -- EXERCISES

Given the following two table declarations:

TABLE TRACK1 (1:100); TABLE TRACK2 (1:100);

BEGIN BEGIN

ITEM DISTANCE U 5; ITEM DIS2 U 5 N;

ITEM STATBIT B 3; ITEM STB2 B 3;

ITEM ANGLE S 4; ITEM ANG2 S 4;

END END

For each of the following, diagram the layout of the table. Assume

that BITSINWORD is 32, M (medium packing) implies packing on the half

word (bit 16), and that the compiler does not rearrange items within a

,' table entry.

1. TABLE TRACK1 (1:100); (that is, as shown above)

2. TABLE TRACKI (1:100) D;

3. TABLE TRACK2 (1:100) D;

4. TABLE TRACKI (1:100) M;

5. TABLE TRACK2 (1:100) M;

1081-1 9: 1-7

ANSWERS

0 31

. [D(1)

1 s(1) 300 words
A(l)

0 31
[D (100)

0 45 78 12 31

2 D . 12 100 words

0 4 5 78 12 31_

ID S A

1081-1 9:1-8

Ii=. a-_:. : . •. -- ---- ...

ANSWERS

0 2 3 7 8 31

3. 1 D2(1) 2 200 words

0 2 3 7:8 31

D2(100)

S2 IA2
(100]1(100)

0 15 16 31

4. A(l) S(1 200 words

0 15 16 31

D(100) S(100)

A(100)

0 15 16 31

5. 2(1 200 words

S2(1) A2(1)

0 15 16 31[D2(100)
S2(100) A2(100)I

1081-1 9:1-9 S F U I

LIKE OPTION WITH PACKING

A table may have dense, medium or normal packing. When a

table-type is declared using a like-option, packing does not apply to items

specified within the like-option. For example, given the following

declarations:

TYPE TEST TABLE D;

BEGIN

ITEM READ B 1;

ITEM SET B 1;

END

TYPE RETEST TABLE

LIKE TEST;

F IITEM GO B 1;

Item GO, declared within the like-option, is not densely packed.

STRUCTURE

Table structure refers to the way in which whole entries of a

table are laid out in memory. JOVIAL (J73) permits two fundamental types

of structure, serial and parallel.

Serial Structure: The compiler lays out a serial table by taking

the first word of the first entry, followed by the second word of the

first entry, and so on. The entire first entry is allocated in this way,

followed by the entire second entry, and so on.

A serial table may be structured as either an ordinary serial

table, in which the compiler starts each entry in a new word, or a tight

serial table, in which the compiler allocates as many entries as possible

within a single word.

1081-1 9:1-10

- ---- " - -- - - , ...

Parallel Structure: A table with PARALLEL structure may be

specified only for a table in which none of the items of an entry occupy

more than one word. A table is layed out in a parallel structure on a

word-by-word basis.

The compiler lays out a parallel table by taking the first word

(word 0) of the first entry followed by the first word of the second entry

and so on to the first word of the last entry, then the second word

(word 1) of the first entry, the second word of the second entry, and so

on.

Examples

Consider the following declarations:

TABLE SBOX(1:2); TABLE PBOX(1:2) PARALLEL;

BEGIN BEGIN

ITEM HEIGHT U; ITEM HEIGHT U;

ITEM WIDTH U; ITEM WIDTH U;

ITEM LENGTH U; ITEM LENGTH U;

END END

The structure of these tables can be diagrammed as follows:

SBOX (serial) PBOX (parallel)

HEIGHT(1) HEIGHT(1)

WIDTH(l) HEIGHT(2)

LENGTH(1) WIDTH(1)

HEIGHT(2) WIDTH(2)

WIDTH(2) LENGTH(1)

LENGTH(2) LENGTH(2)

1081-1 9:1-11
05 JbC3E4

-- '-.--

The structure-spec is given in the table declaration following the

parenthesized dimension-list, as follows:

TABLE name [(dimension-list) I (structure-spec I

packing-spec 1;

entry-description

The square brackets indicate that the dimension-list, structure-

spec, and packing-spec are optional. Although the dimension-list is

optional in a table-declaration, a structure-spec is meaningful only when

the table is dimensioned.

Structure-spec is one of the following:

PARALLEL

T (bit-per-entry I

The square brackets indicate that bits-per-entry is optional.

The letter T indicates tight serial structure. Bits-per-entry is

an integer formula known at compile-time that gives the number of bits

allocated for each entry. If bits-per-entry is not given, the compiler

uses the minimum number of bits necessary to represent the entry for

bits-per-entry. If no structure-spec is given, the compiler assumes

that the table is an ordinary serial table.

Examples

1) Consider the following table declarations and layouts:

TABLE CLASSI (1,1);

BEGIN

ITEM SUBI U 5;

ITEM LVI U 3;

ITEM HR1 U 6;

END

1081-1 9:1-12

BIT 0 31

SUB1 (0,0)

LV1 (0,0)

HR1 (0,0)

SUBi (0.1)
LVi (0,1)

HRI (0,1)

suai 0.0)
LV1 (1,0)
HR1 (1,0)

SUB1 (1,1)

LVI (1.1)

HRI (1,1)

2) TABLE CLASS2 (1,1) PARALLEL;

BEGIN

ITEM SUB2 U 5;

ITEM LV2 U 3;

ITEM HR2 U 6;

END
0 31

SUB2 (0.0)

SUB2 (0,1)

SUB2 (1,0)
SUB2 (1,1)

LV2 (0,0)

LV2 (0,1)

LV2 (1,.0)
LV2 (1,1)

HR2 (0,0)

HR2 (0,1)
HR2 (1,0)

HR2 (1,1)

1081-1 9:1-13

L A

3) TABLE CLASS3 (1,1) T 16;

BEGIN

ITEM SUB3 11 5;

ITEM LV3 U 3;

ITEM HR3 U 6;

END

0 13 16 29 31

entry (0,0) entry (0,1)

SUB3, LV3, HR3 SUB3, LV3, HR3

entry (1,0) entry (1,1)

SUB3, LV3, HR3 SUB3, LV3, HR3

4) Given the following declaration:

TABLE CLASS(1:45) T;

BEGIN

ITEM SUBJ U 5;

ITEM LV U 3;

ITEM HOURS U 6;

END

Default packing for a table with tight-structure is dense.

1081-1 9:1-14

LJ-I

If BITSINWORD is 32, two entries can be packed per word, as

follows:
Bit 0 4/5 7/8 13/14 18/19 21/22 27/ 31

r --------SBJ ---HOUR -SUB I
CLASS(O), CLASS(2) I SUBJ LV HOURS SUBJ LV HOURS xxxx:

'LS() CLSS4 SUBJ LV HOURS SUBJ LV HOURS xxxx

- -- --- --- --- ---- --- -- ---- - ---- --- -- -- - -

CLASS(45) SUBJ LV HOURS xxxxxxxxxxxxxxxxxxi

If BITSINWORD is 48, three entries can be packed per word, as

follows:
Bit 0 13114 27128 -411 - 47

------------------------------- 1

, SUBJ LV HOURS SUBJ LV HOURS SUBJ LV HOURS xxxxxx
-- I
SUBJ LV HOURS SUBJ LV HOURS SUBJ LV HOURS xxxxxx,

-------------------- ----------------------------------- I
SSUBJ LV HOURS SUBJ LV HOURS SUBJ LV HOURS xxxxxx

------------ ------------------------------------- --

NOTE: When an item is declared outside of a packed table its

implemented precision, the number of bits it is actually

allocated, may be more than its declared precision, the

number of bits declared for its size. When an item is

declared in a packed table, the implemented precision is

the same as the declared precision. An assignment to an

item in a packed table may result in a loss of significant

digits.

-9:1-5 SC)FT&S-H

PACKING AND STRUCTURE -- EXERCISES

Indicate what is "wrong" with the following declarations:

1. TABLE BOX PARALLEL;

BEGIN

ITEM HEIGHT U;

ITEM WIDTH U;

ITEM LENGTH U;

END

2. TABLE DATA(100) T;

ITEM DATAPOINT U;

3. TABLE RETURNS(99) D;

BEGIN

ITEM DATE U;

ITEM PRIORITY F N;

END

Assuming BITSINWORD is 32, indicate how many words the

following tables occupy.

4. TABLE DATA(1:10) D;

BEGIN

ITEM POINT U 5;

ITEM XCOORD U 5;

ITEM YCOORD U 5;

END

1081-1 9:1-16

t 6

PACKING AND STRUCTURE -- EXERCISES

5. TABLE DATA(1:1O) T 16;

BEGIN

ITEM POINT U 5;

ITEM XCOORD U 5;

ITEM Y COORD U 5;

END

6. TABLE DATA (1:10) D;

BEGIN

ITEM POINT U 5 N;

ITEM XCOORD U 5;

ITEM YCOORD U 5;

END

1081-1 9:1-17 Sorecm

ANSWERS

Indicate what is "wrong" with the following declarations:

1. TABLE BOX PARALLEL; PARALLEL in undimensioned
has no effect.

BEGIN

ITEM HEIGHT U;

ITEM WIDTH U;

ITEM LENGTH U;

END

2. TABLE DATA(100) T; Tight has no effect when
entries take more than

ITEM DATAPOINT U; halfword.

3. TABLE RETURNS(99) D; Dense has no effect when no

packing can be done.
* BEGIN

ITEM DATE U;

ITEM PRIORITY F N;

END

Assuming that BITSINWORD is 32, indicate how many words the

following tables occupy.

4. TABLE DATA(1:10) D; 10 words

BEGIN

ITEM POINT U 5;

ITEM XCOORD U 5;

ITEM YCOORD U 5;

END

1081-1 9:1-18

ANSWERS

S. TABLE DATA(1:10) T 16; 5 words

BEGIN

ITEM POINT U 5;

ITEM XCOORD U 5;

ITEM Y COORD U 5;

END

6. TABLE DATA (1:10) D; 20 words

BEG IN

ITEM POINT U 5 N;

ITEM XCOORD U 5;

ITEM YCOORD U 5;

END

1081-1 9:1-19 45OMFJT4 MW

LIKE-OPTION WITH STRUCTURE

A table may have serial (by default), tight or parallel structure.

When a table type is declared using a like-option, the following con-

straints hold:

1) Bits-per-entry, in tight tables, also includes
entries declared in the like-option.

2) A table obtained from like-option must have the
same structure as the table-type using it.

Example

TYPE TEST TABLE T 16;

BEGIN

ITEM READY B 1;

ITEM SET B 1;

END

TYPE RETEST TABLE T 16;

LIKE TEST;

ITEM GO B 1;

1081-1 9:1-20

THE JOVIAL (J73) WORKBOOK

VOLUME 12

APPLICATIONS

1081-1

April 1981

This material may be reproduced by
and for the US Government pursuant
to the copyright license under DAR
Clause 7-104.9(a) (1977 APR).

Submitted to

Department of the Air Force
Rome Air Development Center

ISIS
Griffiss Air Force Base, NY 13441

Prepared by

So' ech, Inc.
460 Totten Pond Road

Waltham, MA 02154

QCopyright, SofTech, Inc., 1981

PREFACE

This workbook is intended for use with Tape 12 of the JOVIAL (J73)

Video Course. Its purpose is to elaborate upon and reinforce concepts and

language rules introduced in the videotape.

Dynamic storage allocation is the application discussed in the

following pages. The structure and content of this workbook follow almost

exactly that of the videotape. Examples of J73 code given in the videotape

are repeated, along with explanations.

Section 1 illustrates three ways to create a linked list (two of which

are discussed in the tape). Section 2 addresses the creation, allocation

and deallocation of storage. It is suggested that the student follow along

in the workbook while viewing the videotape.

1

1081-1 UO 1 ca-a

i,.

TABLE OF CONTENTS

Section

SYNTAX 12: iv

1 LINKED LISTS 12:1-1

2 SAMPLE STORAGE MANAGEMENT ROUTINES 12:2-1

1081-1 12:iii

L~. *._

SYNTAX

The syntax conventions used in the JOVIAL (U73) Video Course

and workbook are as follows:

Syntax Meaning Sample Expansions

(some-feature] Brackets indicate an some-feature
optional feature. OR

nothing

(one I other} Braces with a vertical one
bar indicate disjunction- OR
a choice between other
alternatives.

his-one) Braces with each feature this-one
hat-one, on separate lines indicate OR

disjunction - a choice that-oneIbetween alternatives.

letter ... The sequence '.... letter
indicates one or more letter letter
repetitions of a feature. letter letter letter

(letter),... The sequence "..." (letter)
following a comma (or a (letter) (letter)
colon) indicates one or (letter) (letter) (letter)
more repetitions of the
feature separated by
commas (or colons).

rthis-onel1 Syntax symbols may be this-one + (another)
[\that-onei combined, that-one + (another)

+ another + (another)

1081-1 12:iv %0 TMr.

SECTION 1

LINKED LISTS

* IsC3

1 -- -

LINKED LISTS

A programmer may use dynamic storage when a program requires a

constantly changing data configuration. One example of this kind of data

structure is a linked list. A linked list could be diagrammed as follows:

LISTPTR

NEXTOPTRI NEXTOPTR NEXTOPTR NEXTOPTR

NULL

This diagram shows four data objects linked together by an item,

NEXTOPTR. The NEXTOPTR at the end of the list points to NULL, and

LISTPTR points to the head of the list.

The following declarations give information about the representation

of the elements in the linked list:

TYPE LISTYPE TABLE;
BEGIN
ITEM VALUE U;
ITEM ANSWER B 4;

ITEM NEXTOPTR P LISTYPE;
END

ITEM LISTPTR P LISTYPE;
ITEM TEMPTR P LISTYPE;

1081-1 12:1-1 S T C

Z-7--

VALUE VALUE VALUE VALUE

LISTPTR
ANSWER ANSWER ANSWER ANSWER

NEXTOPTR NEXTOPTR NEXTOPTR NEXTOPTR

NULL

This list was created such that the value of LISTPTR is the address of

the first element in the list, so the dereference @LISTPTR is used to

reference items in that first element. For example, the first VALUE is

referenced as follows:

VALUE @ LISTPTR

Similarly, a reference to the item answer in the first element would look

like this --

ANSWER @ LISTPTR

The value of the first NEXTOPTR is the address of the second element in

the list, so the dereference @(NEXTOPTR @ LISTPTR) is used to reference

items in the second element. For example, the second VALUE is referenced

by:

VALUE @ (NEXTOPTR @ LISTPTR)

To reference items in the third element, an item name followed by

three dereferences would be used --

ANSWER @ (NEXTPTR @(NEXTPTR @ LISTPTR))

A way of simplifying this process somewhat would be to assign the address

of the third element of the list to a temporary pointer as follows:

TEMPTR = NEXTOPTR @ (NEXTOPTR @ LISTPTR);

1081-1 12:1-2

That pointer may then be used in a data reference --

VALUE @ TEMPTR

CREATING LINKED LISTS

Linked lists don't "just happen;" VALUE, ANSWER, and NEXTOPTR

are not just randomly grouped together; the NEXTOPTRs do not automatically

point to another element. This data structure must be created by the

programmer.

First, the programmer must write storage management routines to

set up and maintain a heap of free storage, to allocate that storage, and to

deallocate that storage and return it to the heap. (The heap is a large

area of storage that may be supplied by an implementation or managed by

the programmer.)

Section 2 defines algorithms suitable for this purpose, but for now

assume that the following subroutines are available:

0 MAKE'HEAP'LISTYPE -- to create a heap of storage

0 NEW'LISTYPE -- to allocate storage from the heap

0 FREEtLISTYPE -- to free allocated storage and return
it to the heap

There are several ways to create the linked list pictured above.

To begin with, the first element of the list is allocated by calling the

NEW'LISTYPE function, which returns a pointer whose value is the

address of a new piece of storage of type LISTYPE. The address of this

piece of storage is assigned to be the value of LISTPTR, which is used to

indicate the head of the list --

LISTPTR = NEW'LISTYPE;

The second element of the list is added by calling the NEW'LISTYPE

function and assigning the returned pointer to new storage to be the value

of the NEXTOPTR at the element pointed to by LISTPTR --

NEXTOPTR @ LISTPTR = NEW'LISTYPE;

1081-1 12:1-3

The third element is added in the same manner -

NEXTOPTR @ (NEXTOPTR @ LISTPTR) = NEW'LISTYPE;

as is the fourth element --

NEXTOPTR @ (NEXTOPTR @~ (NEXTOPTR @ LISTPTR)) = NEW'LISTYPE;

The value of the last NEXTOPTR is set to NULL to indicate the end of the

list --

NEXTOPTR @ (NEXTOPTR Ca (NEXTQPTR @ (NEXTQPTR @

LISTPTR)) = NULL;

Thus, using the following code:

TYPE LISTYPE TABLE;
BEGIN
ITEM VALUE U;
ITEM ANSWER B 4;
ITEM NEXTOPTR P LISTYPE;
END

ITEM LISTPTR P LISTYPE;

LISTPTR = NEW'LISTYPE; (one link)

NEXTOPTR @ LISTPTR = NEW'LISTYPE; (two links)

NEXTOPTR @ (NEXTOPTR @ LISTPTR) NEWLISTYPE; (three links)

NEXTOPTR @ (NEXTOPTR @ (NEXTOPTR @ LISTPTR)) =(four links)
NEW'LISTYPE;

NEXTOPTR @ (NEXTOPTR @ (NEXTQPTR @ (NEXTOPTR @ (last pointer
LISTPTR)) = NULL; set to NULL)

A linked list of elements looking like LISTYPE can be created -

(VALUE VALUE VALUE VALUE

LSPR ANSWER ANSWER ANSWER ANSWER

NEXTOPTR NEXTOPTR NEXTOPTR NEXTOPTR

NULL

1081-1 12:1-4

By introducing another pointer item, used to indicate the current

end of the list, and by using a for-loop, the previous code becomes

simplified --

TYPE LISTYPE TABLE;
BEGIN
ITEM VALUE U;
ITEM ANSWER B 4;
ITEM NEXTOPTR P LISTYPE;
END

ITEM LISTPTR P LISTYPE;
ITEM TAILPTR P LISTYPE;

LISTPTR = NEW'LISTYPE; (one link)
TAILPTR = LISTPTR; (three times do:)
FOR I : 1 BY 1 WHILE I <= 3;

BEGIN
NEXTOPTR @ TAILPTR NEW'LISTYPE; (add new link to end)
TAILPTR = NEXTOPTR @ TAILPTR; (move temporary ptr)
END

NEXTOPTR @ TAILPTR = NULL; (set ptr at end to
NULL)

The first element in the list is allocated by calling NEW'LISTYPE,

and its address is assigned to LISTPTR. Since it also represents the

current final element in the list, TAILPTR also points to it.

The remaining three elements are added in the for-loop. First, a

new piece of storage is obtained, and its address becomes the value of

NEXTOPTR at the current end of the list. Then, TAILPTR is set to

indicate the new end of the list. This process is repeated two more times,

until all four elements are allocated and linked together. Finally, the

NEXTOPTR at the current end of the list is set to NULL to indicate the

end of the list.

The third method of creating a linked list, alluded to in the tape,

involves the inverse process -- i.e., creating the linked list from NULL.

The following code may be used to accomplish this --

1081-1 12:1-5 5oFTER..

TYPE LISTYPE TABLE;
BEGIN
ITEM VALUE U;
ITEM ANSWER B 4;
ITEM NEXTOPTR P LISTYPE;
END

ITEM LISTPTR P LISTYPE;
ITEM TEMPTR P LISTYPE;

LISTPTR = NEW'LISTYPE;
NEXTOPTR @ LISTPTR = NULL;
FOR I : 1 BY 1 WHILE I <= 3;

BEGIN
TEMPTR = NEW'LISTYPE;
NEXTOPTR @ TEMPTR = LISTPTR;
LISTPTR = TEMPTR;
END

This program piece creates a linked list from the bottom up. The

NEXTOPTR of the first element is set to NULL and new elements are

created and added to the list between the LISTPTR and previous elements.

VALUE
LISTPTR

ANSWER

NEXTOPTR

NULL
REMOVING ELEMENTS FROM A LINKED LIST

An element does not "just disappear" from a linked list. It must

be deallocated and the freed storage area returned to the built-in or

programmer-defined heap storage. This is done by using the FREEILISTYPE

procedure. The FREE'LISTYPE procedure is called with a pointer-formula

as input.

Using the linked list structure created above the following example

removes the topmost element.

1081-1 12:1-6

Example

SAVEPTR = NEXTOPTR @ LISTPTR;

FREE'LISTYPE(LISTPTR);

LISTPTR = SAVEPTR;

LISTPTR

VALUE VALUE

ANSAWER ANSWER

NEXTOPTR NEXTOPTR

First the address of the second element in the list is saved. Then,

the FREE'LISTYPE procedure is called with LISTPTR so the storage for

the first element is returned to the heap. Finally, LISTPTR is reassigned

to indicate the new head of the list.

Freeing an element from the middle of the list is a bit more

complicated. The following program fragment frees the third element

of the Ii~t and returns it to the heap:

TYPE LISTYPE TABLE;
BEG IN
ITEM VALUE U;
ITEM ANSWER B 4;
ITEM NFXTOPTR P LISTYPE;
END

ITEM LISTPTR P LISTYPE;
ITEM AFTERPTR P LISTYPE;
ITEM BEFORE PTR P LISTYPE;

BEFOREPTR = NEXTOPTR @ LISTPTR;
AFTER PTR - NEXTOPTR @ (NEXTOPTR @ BEFOREPTR);
FREE'LISTYPE (NEXTOPTR @ BEFOREPTR);
NEXTOPTR @ BEFOREPTR = AFTERPTR;

1081-1 12:1-7 80J~g 4

BEFOREPTR AFTERPTR

VALUE VALUE VALUE VALUE
LISTPTR

ANSWER ANSWER ANSWER ANSWER

NEXTOPTR NEXTOPTR NEXTOPTRj NEXTOPTR

NULL

BEFOREPTR is used to save the parts of the list before the elements to be

freed; AFTERPTR is used to save the rest. FREE'LISTYPE is called to

return the selected element to the heap, and the remaining parts of the

list are linked.

SORTING A LINKED LIST

In some applications, linked lists may need to be sorted for quicker

access of certain elements. One method of sorting a list involves re-

assigning pointers to change the order in which the list is traversed;

this effectively reorders the elements. In the following example, the

NEXTOPTRs will be reassigned such that the third element will be

traversed before the second.

TYPE LISTYPE TABLE;
BEGIN
ITEM VALUE U;
ITEM ANSWER B 4;
ITEM NEXTOPTR P LISTYPE;
END

ITEM LISTPTR P LISTYPE;
ITEM THIRDPTR P LISTYPE;
ITEM SECONDPTR P LISTYPE;
ITEM SAVEPTR P LISTYPE;

THIRDPTR = NEXTOPTR @ LISTPTR;
SECONDPTR = NEXTOPTR @ THIRDPTR;
SAVEPTR = NEXTOPTR @ SECONDPTR;
NEXTOPTR @ LISTPTR = SECONDPTR:
NEXTOPTR @ SECONDPTR = THIRDPTR;
NEXTOPTR @ THIRDPTR = SAVEPTR;

1081-1 12:1-8

THIRDPTR is set to indicate the element that will be traversed

third; SECONDPTR is set to indicate the element that will be traversed

second; and SAVEPTR is set to save the end of the list. The NEXTOPTRs

are reassigned as follows:

a. the value of the first NEXTOPTR is assigned to be the
address of the element pointed to by SECONDPTR.

b. the value of the now second NEXTOPTR is assigned to
be the address of the element pointed to by THIRDPTR.

c. the now third NEXTOPTR is linked to the saved portion
of the list.

081-1 12:1-9 S0ITrP g p

SECTION 2

SAMPLE STORAGE
MANAGEMENT ROUTINES

SAMPLE STORAGE MANAGEMENT ROUTINES

This section looks at the storage management routines shown in

Tape 12, which were designed to be used with a list consisting of elements

of type LISTYPE.

Since the storage management routines were designed by one

programmer to be used easily by another, two compool-modules were

written.

START
COMPOOL TYPES;

TYPE LISTYPE TABLE;
BEGIN
ITEM VALUE U;
ITEM ANSWER B 4;
ITEM NEXTOPTR P LISTYPE;
END

TYPE HEAP'LISTYPE TABLE
TER (1:100) LISTYPE;
TERM

START
! COMPOOL ('TYPES');
COMPOOL REFS;

REF PROC MAKE'HEAP'LISTYPE;
BEGIN
END

REF PROC NEW'LISTYPE P LISTYPE;
BEGIN
END

REF PROC FREE'LISTYPE (IN'PTR);
ITEM IN'PTR P LISTYPE;

REF PROC ERROR (IN'MSG);
ITEM IN'MSG C 20;

TERM

The first compool-module contains type-declarations -- LISTYPE,

which is used as the template for elements in the linked list, and HEAP'

LISTYPE, which collects one hundred elements of type LISTYPE.

HEAPILISTYPE is used as the template for the heap storage, so the

largest linked list that may be created with these storage management

routines could only be one hundred elements long.

1081-1 12:2-1 IL

The second compool-module contains the REF-procs for the storage

management routines and an error routine.

Compool TYPES is imported so the compiler has access to type

LISTYPE which is used in the subroutine-declarations.

Once again -- by placing the REF-procs in a compool-module and

later importing that compool-module into the module containing the DEF-

procs, the compiler is able to check that the correct calling sequence is

given in the REF-procs and that the subroutines as defined are called

in the main-program-module.

The following procedure module imports both compools, one to make

the types available and the other to do the DEFIREF checking. Two local,

static data objects are declared. HEAPTR is used to indicate the head of

the heap storage; HEAPTAB is the table that is used to create the heap

storage.

START
j !COMPOOL ('REFS');

* COMPOOL ('TYPES');
ITEM HEAPTR P LISTYPE;
TABLE HEAPTAB HEAP'LISTYPE;
DEF PROC MAKE'HEAP'LISTYPE;

BEGIN
ITEM TEMPTR P LISTYPE;
ITEM UPPER U;
ITEM LOWER U;
UPPER = UBOUND (HEAPTAB, 0);
LOWER = LBOUND (HEAPTAB, 0);
HEAPTR = LOC (HEAPTAB (UPPER));
NEXTOPTR @ HEAPTR = NULL;
FOR I : UPPER BY -1 WHILE I <= LOWER:

BEGIN
TEMPTR = LOC (HEAPTAB)(I-1));
NEXTOPTR @ TEMPTR = HEAPTR;
HEAPTR = TEMPTR;
END

END

1081-1 12:2-2

S---I-l--l.-ll". Jil II -. ... I

DEF PROC NEW'LISTYPE P LISTYPE;
BEGIN
ITEM TEMPTR P LISTYPE;
IF HEAPTR = NULL;

ERROR (NEW'LISTYPE);
ELSE

BEGIN
TEMPTR = HEAPTR;
HEAPTR = NEXTOPTR @ TEMPTR;
NEXTOPTR @ TEMPTR = NULL;
NEW'LISTYPE = TEMPTR;
END

END

DEF PROC ERROR (IN'MSG);
BEG IN
ITEM IN'MSG C 20;
!TRACE IN'MSG;
IN'MSG = IN'MSG;
STOP;
END

DEF PROC FREE'LISTYPE (IN'PTR);~BEGIN
ITEM IN'PTR P LISTYPE;
NEXTOPTR @ IN'PTR = HEAPTR;
HEAPTR = IN'PTR;
END

TERM

The first subroutine-definition creates the heap storage. It must

be called once and only once by the program usi.-g the storage manage-

ment routines to initialize the heap storage.

MAKE'HEAP'LISTYPE takes 100 unliked elements of type LISTYPE

(that is what HEAP'LISTYPE described) and links them together, beginning

with the largest subscripted element being the end of the list, then

adding new elements to the head of the list.

1081-1 12:2-3 SOfjcm

AD-AlbA 528 SOFTECH INC WALTHAM MA F/S 5/9
THE JOVIAL (J73) WORKBOOK. VOLUME 10. OIRECTIVES.(u)
NOV W I F30602-79-C-0040

UNCLASSIFIED RADC-TR-81-333-VOL-10 NL

Eflj .0 N::: 1.8

111 L2 14

NAINL55 AIOf TN (A2 I I (,,, 111
, MICROCOPY RESOLUIION TEST CHART

NATI(ONAL B116R ALJ (LI $T*ND),ft(1 I" hA

When MAKE'HEAP'LISTYPE is finished executing, HEAPTR is

pointing to the current head of HEAPTAB, the lowest subscripted element.

NEW'LISTYPE is defined to first check if there is available heap

storage by checking the value of HEAPTR.

If HEAPTR is equal to NULL, no storage is available, and the name

NEW'LISTYPE is passed to an error routine.

This error routine is defined to output the name of the routine

with the error, in this case, NEW'LISTYPE, and then to stop program

execution.

If storage is available, a temporary pointer indicates the storage to

be allocated, HEAPTR is moved to what will be the head of the list after

the element is allocated, the element to be allocated is unhooked from the

heap, and allocated as the return-value of NEW'LISTYPE. FREEILISTYPE

is defined to assign the value of the NEXTOPTR of the element being

returned to the heap to the head of heap and then HEAPTR is

adjusted to indicate the new head of the heap storage list.

Once these storage management routines have been compiled, any

programmer may use them in a program by importing the compool-modules

with the type-declarations and the REF-procs.

The heap is initialized by calling MAKE'HEAP'LISTYPE once.

The NEW'LISTYPE function is called when the linked list is

growing; the FREE'LISTYPE procedure is called when elements are to be

returned to the heap.

1081-1 12:2-4

MISSION
* Of

Rome Air Development Center
RAIJC ptan& and execu-te6 'tez~eavich, devetCopnent, te.6t and
,setected acqui~ition pt'wguam in .6uppo~t o6 Command, ContLot
Commun~ccation6 and Intettigence. (C31) activtiZez. Technict
and engiLneeting 6uppott within auazo og techn.Zcat competenceI Z~i6 p~toided to ESP PkogtLa O6jice,6 (P0.6) and othet ESD
etemen-th. The ptincipat techn4 cat mL5~ion ateaz a'te
commun-ication6, etectr~omagnetic guidance and contAot, 6uA-
veittnce. oA q'tound and aeto,6pace oblect6, intei ence data
coil ecaon and handting, in~,o'uation 6atem technotogy,
-iono.!,pheiic putopagation, Aof-d 4 tate. sence.6, m.ictove
phy6c,& and eeectwnic 'tefiabiity, maintainabLL~ty and
comnpatibitity.

~ 4L

